Atlas Simulation: A Numerical Scheme for Approximating Multiscale Diffusions Embedded in High Dimensions
Date
2014
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
When simulating multiscale stochastic differential equations (SDEs) in high-dimensions, separation of timescales and high-dimensionality can make simulations expensive. The computational cost is dictated by microscale properties and interactions of many variables, while interesting behavior often occurs on the macroscale with few important degrees of freedom. For many problems bridging the gap between the microscale and macroscale by direct simulation is computationally infeasible, and one would like to learn a fast macroscale simulator. In this paper we present an unsupervised learning algorithm that uses short parallelizable microscale simulations to learn provably accurate macroscale SDE models. The learning algorithm takes as input: the microscale simulator, a local distance function, and a homogenization scale. The learned macroscale model can then be used for fast computation and storage of long simulations. I will discuss various examples, both low- and high-dimensional, as well as results about the accuracy of the fast simulators we construct, and its dependency on the number of short paths requested from the microscale simulator.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Crosskey, Miles Martin (2014). Atlas Simulation: A Numerical Scheme for Approximating Multiscale Diffusions Embedded in High Dimensions. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8718.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.