Synthesis and preliminary evaluation of 5-[18F] fluoroleucine.

Abstract

BACKGROUND: Amino acid transporters, such as LAT1, are overexpressed in aggressive prostate and breast carcinomas, directly influencing pathways of growth and proliferation. OBJECTIVE: The purpose of this study is to synthesize and characterize a novel 18F labeled leucine analog, 5-[18F]fluoroleucine, as a potential imaging agent for aggressive tumors which may not be amenable to imaging by FDG PET. METHODS: 5-fluoroleucine was synthesized and characterized, and its 18F-labeled analog was synthesized from a mesylate precursor. First, breast cancer cell line assays were performed to evaluate uptake of L-leucine and other essential amino acids. Both L-leucine and 5-[18F]fluoroleucine were tested for uptake and accumulation over time, and for uptake via LAT1. Biodistribution studies were performed to estimate radiation dosimetry for human studies. Small animal PET / CT studies of a breast cancer were performed to evaluate in vivo 5-[18F]fluoroleucine tumor uptake. RESULTS: Breast cancer cell lines showed increasing high net accumulation of L-leucine. Both L-leucine and 5-[18F]fluoroleucine showed increasing uptake over time in in vitro tumor cell assays, and uptake was also shown to occur via LAT1. The biodistribution study of 5-[18F]fluoroleucine showed rapid renal excretion, no significant in vivo metabolism, and acceptable dosimetry for use in humans. In vivo small animal PET / CT imaging of a breast cancer xenograft showed uptake of 5-[18F]fluoroleucine in the tumor, which progressively increased over time. CONCLUSION: 5-[18F]fluoroleucine is a leucine analog which may be useful in identifying tumors with high or upregulated expression of amino acid transporters, providing additional information that may not be provided by FDG PET.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Reiman

Robert Ellis Reiman

Associate Professor of Radiology

Dr. Reiman is diplomate of the American Board of Nuclear Medicine, and is the Associate Director the Radiation Safety Division of Duke's Occupational and Environmental Safety Office.  He is on the faculty the Department of Radiology and is a member of the Faculty of the Duke Medical Physics Graduate Program.  He coordinates the patient care activities of the Duke Radiation Safety Division and participates in the teaching of radiology residents, nuclear medicine fellows, cardiology fellows and medical students.  His current research interests include internal radionuclide dosimetry and the application of Web-based systems to problems in radiation safety and dosimetry.  He has also published on imaging of bone, brain and soft-tissue tumors with nitrogen-13 labeled amino acids.

Zalutsky

Michael Rod Zalutsky

Jonathan Spicehandler, M.D. Distinguished Professor of Neuro Oncology, in the School of Medicine

The overall objective of our laboratory is the development of novel radioactive compounds for improving the diagnosis and treatment of cancer. This work primarily involves radiohalo-genation of biomolecules via site-specific approaches, generally via demetallation reactions. Radionuclides utilized for imaging include I-123, I-124 and F-18, the later two being of particular interest because they can be used for the quantification of biochemical and physiological processes in the living human through positron emission tomography. For therapy, astatine-211 decays by the emission of alpha-particles, a type of radiation considerably more cytotoxic that the beta-particles used in conventional endoradiotherapy. The range of At-211 alpha particles is only a few cell diameters, offering the possibility of extremely focal irradiation of malignant cells while leaving neighboring cells intact. Highlights of recent work include: a)
development of reagents for protein and peptide radioiodination that decrease deiodination in vivo by up to 100-fold, b) demonstration that At-211 labeled monoclonal antibodies are effective in the treatment of a rat model of neoplastic meningitis, c) synthesis of a thymidine analogue labeled with At-211 and the demonstration that this molecule is taken up in cellular DNA with highly cytotoxicity even at levels of only one atom bound per cell and d) development of
radiohalobenzylguanidines which are specifically cytotoxic for human neuroblastoma cells.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.