Structure-Guided Development of Novel LpxC Inhibitors

dc.contributor.advisor

Zhou, Pei

dc.contributor.author

LEE, CHUL-JIN

dc.date.accessioned

2013-05-13T15:32:16Z

dc.date.available

2015-05-07T04:30:04Z

dc.date.issued

2013

dc.department

Biochemistry

dc.description.abstract

The incessant increase of antibiotic resistance among Gram-negative pathogens is a serious threat to public health worldwide. A lack of new antimicrobial agents, particularly those against multidrug-resistant Gram-negative bacteria further aggravates the situation, highlighting an urgent need for development of effective antibiotics to treat multidrug-resistant Gram-negative infections. Past efforts to improve existing classes of antimicrobial agents against drug-resistant Gram-negative bacteria have suffered from established (intrinsic or acquired) resistance mechanisms. Consequently, the essential LpxC enzyme in the lipid A biosynthesis, which has never been exploited by existing antibiotics, has emerged as a promising antibiotic target for developing novel therapeutics against multidrug-resistant Gram-negative pathogens.

In Chapter I, I survey the medically significant Gram-negative pathogens, the molecular basis of different resistance mechanisms and highlight the benefits of novel antibiotics targeting LpxC. In Chapter II, I discuss a structure-based strategy to optimize lead compounds for LpxC inhibition, revealing diacetylene-based compounds that potently inhibit a wide range of LpxC enzymes. The elastic diacetylene scaffold of the inhibitors overcomes the resistance mechanism caused by sequence and conformational heterogeneity in the LpxC substrate-binding passage that is largely defined by Insert II of LpxC. In Chapter III, I describe the structural basis of inhibitor specificity of first-generation LpxC inhibitors, including L-161,240 and BB-78485 and show that bulky moieties of early inhibitors create potential clashes with the a-b loop of Insert I of non-susceptible LpxC species such as P. aeruginosa LpxC, while these moieties are tolerated by E. coli LpxC containing long and flexible Insert I regions. These studies reveal large, inherent conformational variation of distinct LpxC enzymes, providing a molecular explanation for the limited efficacy of existing compounds and a rationale to exploit more flexible scaffolds for further optimization of LpxC-targeting antibiotics to treat a wide range of Gram-negative infections.

In Chapters IV and V, a fragment-based screening and structure-guided ligand optimization approach is presented, which has resulted in the discovery of a difluoro biphenyl diacetylene hydroxamate compound LPC-058 with superior activity in antibacterial spectrum and potency over all existing LpxC inhibitors. In Chapter VI, I describe our efforts to improve the cellular efficacy of LPC-058 by reducing its interaction with plasma proteins, such as human serum albumin (HSA). The binding mode of LPC-058 was captured in the crystal structure of HSA/LPC-058 complex. The acquired structural information facilitated the development of the dimethyl amine substituted compound LPC-088 that displays significantly improved cellular potency in presence of HSA.

dc.identifier.uri

https://hdl.handle.net/10161/7106

dc.subject

Biochemistry

dc.subject

Pharmaceutical sciences

dc.subject

Antibiotic

dc.subject

complex

dc.subject

inhibitor

dc.subject

Lipid A

dc.subject

LpxC

dc.title

Structure-Guided Development of Novel LpxC Inhibitors

dc.type

Dissertation

duke.embargo.months

24

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LEE_duke_0066D_11745.pdf
Size:
12.12 MB
Format:
Adobe Portable Document Format

Collections