Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate.

Loading...
Thumbnail Image

Date

2009-12-03

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

309
views
204
downloads

Citation Stats

Abstract

BACKGROUND: Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. RESULTS: Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. CONCLUSION: We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/1471-2148-9-281

Publication Info

Boulet, Marylène, Marie JE Charpentier and Christine M Drea (2009). Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol Biol, 9. p. 281. 10.1186/1471-2148-9-281 Retrieved from https://hdl.handle.net/10161/4342.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Drea

Christine M. Drea

Professor in the Department of Evolutionary Anthropology

I have two broad research interests, sexual differentiation and social behavior, both focused on hyenas and primates. I am particularly interested in unusual species in which the females display a suite of masculinized characteristics, including male- like or exaggerated external genitalia and social dominance.
The study of naturally occurring hormones in such unique mammals can reveal general processes of hormonal activity, expressed in genital morphology, reproductive development, and social behavior. Taking a combined laboratory and field approach allows me to relate captive data to various facets of the animals' natural habitat, thereby enhancing the ecological validity of assay procedures and enriching interpretation in an evolutionary framework. The goal of comparative studies of hyenas and lemurs is to help elucidate the mechanisms of mammalian sexual differentiation.

My research program in social behavior focuses on social learning and group cohesion. Using naturalistic tasks that I present to captive animals in socially relevant contexts, I can investigate how social interaction modulates behavior, problem- solving, and cognitive performance. By studying and comparing models of carnivore and primate foraging, I can better understand how group-living animals modify their actions to meet environmental demands. A primary interest is determining whether similar factors, related to having a complex social organization, influence learning and performance across taxonomic groups. I am also interested in how animals learn rules of social conduct and maintain social cohesion, as evidenced by their patterns of behavioral developmental, the intricate balance between aggression and play, the expression of scent marking, and the social facilitation or inhibition of behavior.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.