Quantitative analysis of cellular networks: cell cycle entry
Date
2010
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Cellular dynamics arise from intricate interactions among diverse components, such as metabolites, RNAs, and proteins. An in-depth understanding of these interactions requires an integrated approach to the investigation of biological systems. This task can benefit from a combination of mathematical modeling and experimental validations, which is becoming increasingly indispensable for basic and applied biological research.
Utilizing a combination of modeling and experimentation, we investigate mammalian cell cycle entry. We begin our investigation by making predictions with a mathematical model, which is constructed based on the current knowledge of biology. To test these predictions, we develop experimental platforms for validations, which in turn can be used to further refine the model. Such iteration of model predictions and experimental validations has allowed us to gain an in-depth understanding of the cell cycle entry dynamics.
In this dissertation, we have focused on the Myc-Rb-E2F signaling pathway and its associated pathways, dysregulation of which is associated with virtually all cancers. Our analyses of these signaling pathways provide insights into three questions in biology: 1) regulation of the restriction point (R-point) in cell cycle entry, 2) regulation of the temporal dynamics in cell cycle entry, and 3) post-translational regulation of Myc by its upstream signaling pathways. The well-studied pathways can serve as a foundation for perturbations and tight control of cell cycle entry dynamics, which may be useful in developing cancer therapeutics.
We conclude by demonstrating how a combination of mathematical modeling and experimental validations provide mechanistic insights into the regulatory networks in cell cycle entry.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Lee, Tae J. (2010). Quantitative analysis of cellular networks: cell cycle entry. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/2372.
Collections
Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.