Mechanistic Habitat Modeling with Multi-Model Climate Ensembles

dc.contributor.advisor

Johnston, David W

dc.contributor.author

Jones, Hunter

dc.date.accessioned

2013-04-25T20:50:23Z

dc.date.available

2013-04-25T20:50:23Z

dc.date.issued

2013-04-25

dc.department

Nicholas School of the Environment and Earth Sciences

dc.description.abstract

Projections of future Sea Ice Concentration (SIC) were prepared using a 13-member ensemble of climate model output from the Coupled Model Inter-comparison Project (CMIP5). Three climate change scenarios (RCP 2.6, RCP 6.0, RCP 8.5), corresponding to low, moderate, and high climate change possibilities, were used to generate these projections for known Harp Seal whelping locations. The projections were splined and statistically downscaled via the CCAFS Delta method using satellite-derived observations from the National Sea Ice Data Center (NSIDC) to prepare a spatial representation of sea ice decline through the year 2100. Multi-Model Ensemble projections of the mean sea ice concentration anomaly for Harp Seal whelping locations under the moderate and high climate change scenarios (RCP 6.0 and RCP 8.5) show a decline of 10% to 40% by 2100 from a modern baseline climatology (average of SIC, 1988 - 2005) while sea ice concentrations under the low climate change scenario remain fairly stable. Projected year-over-year sea ice concentration variability decreases with time through 2100, but uncertainty in the prediction (model spread) increases. The general decline in sea ice projected by climate models is detrimental to Harp Seal survival, but the effect of the decreased year-over-year variability is less certain.

dc.identifier.uri

https://hdl.handle.net/10161/6819

dc.language.iso

en_US

dc.subject

Global Climate Change

dc.subject

Climate Modeling

dc.subject

Multi-Model Ensemble

dc.subject

Mechanistic Habitat Modeling

dc.subject

Marine mammals

dc.subject

Pinnipeds

dc.title

Mechanistic Habitat Modeling with Multi-Model Climate Ensembles

dc.type

Master's project

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MP - Mechanistic Habitat Modeling with Multi-Model Climate Ensembles - Final - HMJ5.pdf
Size:
11.24 MB
Format:
Adobe Portable Document Format