Understanding Operator Reed-Muller Codes Through the Weyl Transform

dc.contributor.advisor

Calderbank, Robert

dc.contributor.author

Wang, Weiyao

dc.date.accessioned

2018-04-25T16:39:50Z

dc.date.available

2018-04-25T16:39:50Z

dc.date.issued

2018-04-25

dc.department

Mathematics

dc.description.abstract

This paper expands the framework on the multidimensional generalizations of binary Reed-Muller code, operator Reed-Muller codes, where the codewords are projection operators through the Weyl Transform. The Weyl Transform of these operator Reed- Muller codes maps the operators to vectors, and it is isometric. This nice property gives new proofs for some known results and produce a simpler decoding algorithm. In particular, the property provides a different framework to analyze the distance spectrum of second operator Reed-Muller codes without using the Dickson’s Theorem.

dc.identifier.uri

https://hdl.handle.net/10161/16531

dc.language.iso

en_US

dc.subject

Weyl Transform

dc.subject

Reed-Muller Code

dc.subject

Quantum Error-Correction

dc.subject

Coding Theory

dc.subject

Heisenberg-Weyl Group

dc.subject

Symplectic Geometry

dc.title

Understanding Operator Reed-Muller Codes Through the Weyl Transform

dc.type

Honors thesis

duke.embargo.months

0

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Senior_Thesis_WeiyaoWang.pdf
Size:
348.54 KB
Format:
Adobe Portable Document Format
Description:
Main Article
Loading...
Thumbnail Image
Name:
Thesis_Pre.pdf
Size:
240.46 KB
Format:
Adobe Portable Document Format
Description:
Presentation Given