Direct Carbon--Carbon Bond Formation Through Reductive Soft-Enolization of α-Halothioesters and The Total Synthesis of (+)-Mefloquine

Loading...
Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

387
views
699
downloads

Abstract

The direct addition of enolizable aldehydes and sulfonyl imines to α-halo thioesters to produce β-hydroxy/amino thioesters enabled by reductive soft enolization is reported. The transformation is operationally simple and efficient and has the unusual feature of giving high syn-selectivity, which is the opposite of that produced for the aldol addition with (thio)esters under conventional conditions. This method is tolerant to aldehydes and imines that not only contain acidic α-protons, but also towards electrophiles containing other acidic protons and base-sensitive functional groups. Moreover, excellent diastereoselectivity is achieved when a chiral non-racemic α-hydroxy aldehyde derivative is used. Using MgI2 and Ph3P, this method gives a wide range of aldol and Mannich products in good yields with high syn-diastereoselectivity. The products obtained from the reductive aldol and Mannich reactions are synthetically important intermediates in both polyketide and β-lactam synthesis, respectively, and can be readily derivatized to form many carbonyl derivatives through known manipulation of the thioester moiety.

Also, herein the asymmetric synthesis of (+)-mefloquine, a potent anti-malarial compound, is described. The synthesis is based on a key enantioselective Darzens reaction between a chiral α-chloro-N-amino cyclic carbamate (ACC) hydrazone and a quinoline-based aldehyde. This is a novel methodology developed by our lab, which gives a highly enantioenriched epoxide that can be further functionalized to give both enantiomers of mefloquine.

Department

Description

Provenance

Citation

Citation

Sauer, Scott J. (2011). Direct Carbon--Carbon Bond Formation Through Reductive Soft-Enolization of α-Halothioesters and The Total Synthesis of (+)-Mefloquine. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/3952.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.