Relating Traits to Electrophysiology using Factor Models
Date
2020
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Targeted stimulation of the brain has the potential to treat mental illnesses. The objective of this work is to develop methodology that enables scientists to design stimulation methods based on the electrophysiological dynamics. We first develop several factor models that characterize aspects of the dynamics relevant to these illnesses. Using a novel approach, we can then find a single predictive factor of the trait of interest. To improve the quality of the associated loadings, we develop a method for removing concomitant variables that can dominate the observed dynamics. We also develop a novel inference technique that increases the relevance of the predictive loadings. Finally, we demonstrate the efficacy of our methodology by finding a single factor responsible for social behavior. This factor is stimulated in new subjects and modifies behavior in the new individuals. These results indicate that our methodology has high potential in developing future cures of mental illness.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Talbot, Austin B (2020). Relating Traits to Electrophysiology using Factor Models. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/22191.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.