Incorporating simulation into gynecologic surgical training

Loading...
Thumbnail Image

Date

2017-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

97
views
1295
downloads

Citation Stats

Abstract

Today's educational environment has made it more difficult to rely on the Halstedian model of "see one, do one, teach one" in gynecologic surgical training. There is decreased surgical volume, but an increased number of surgical modalities. Fortunately, surgical simulation has evolved to fill the educational void. Whether it is through skill generalization or skill transfer, surgical simulation has shifted learning from the operating room back to the classroom. This article explores the principles of surgical education and ways to introduce simulation as an adjunct to residency training. We review high- and low-fidelity surgical simulators, discuss the progression of surgical skills, and provide options for skills competency assessment. Time and money are major hurdles when designing a simulation curriculum, but low-fidelity models, intradepartmental cost sharing, and utilizing local experts for simulation proctoring can aid in developing a simulation program.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1016/j.ajog.2017.05.017

Publication Info

Wohlrab, Kyle, J Eric Jelovsek and Deborah Myers (2017). Incorporating simulation into gynecologic surgical training. American Journal of Obstetrics and Gynecology. 10.1016/j.ajog.2017.05.017 Retrieved from https://hdl.handle.net/10161/15118.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Jelovsek

John E Jelovsek

F. Bayard Carter Distinguished Professor of Obstetrics and Gynecology

Dr. Jelovsek is the F. Bayard Carter Distinguished Professor of OBGYN at Duke University and serves as Director of Data Science for Women’s Health. He is Board Certified in OBGYN by the American Board of OBGYN and in Female Pelvic Medicine & Reconstructive Surgery by the American Board of OBGYN and American Board of Urology. He has an active surgical practice in urogynecology based out of Duke Raleigh. He has expertise as a clinician-scientist in developing and evaluating clinical prediction models using traditional biostatistics and machine learning approaches. These “individualized” patient-centered prediction tools aim to improve decision-making regarding the prevention of lower urinary tract symptoms (LUTS) and other pelvic floor disorders after childbirth (PMID:29056536), de novo stress urinary incontinence and other patient-perceived outcomes after pelvic organ prolapse surgery, risk of transfusion during gynecologic surgery, and urinary outcomes after mid-urethral sling surgery (PMID: 26942362). He also has significant expertise in leading trans-disciplinary teams through NIH-funded multi-center research networks and international settings. As alternate-PI for the Cleveland Clinic site in the NICHD Pelvic Floor Disorders Network, he was principal investigator on the CAPABLe trial (PMID: 31320277), one of the largest multi-center trials for fecal incontinence studying anal exercises with biofeedback and loperamide for the treatment of fecal incontinence. He was the principal investigator of the E-OPTIMAL study (PMID: 29677302), describing the long-term follow up sacrospinous ligament fixation compared to uterosacral ligament suspension for apical vaginal prolapse. He was also primary author on research establishing the minimum important clinical difference for commonly used measures of fecal incontinence. Currently, he serves as co-PI in the NIDDK Symptoms of Lower Urinary Tract Dysfunction Research Network (LURN) (U01DK097780-05) where he has been involved in studies in the development of Symptoms of Lower Urinary Tract Dysfunction Research Network Symptom Index-29 (LURN SI-29) and LURN SI-10 questionnaires for men and women with LUTS. He is also the site-PI for the PREMIER trial (1R01HD105892): Patient-Centered Outcomes of Sacrocolpopexy versus Uterosacral Ligament Suspension for the Treatment of Uterovaginal Prolapse.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.