Essays on Identification and Promotion of Game-Theoretic Cooperation

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



This dissertation looks at how to identify and promote cooperation in a multiagent system, first theoretically through the lens of computational game theory and later empirically through a human subject experiment. Chapter 2 studies the network dynamics leading to a potential unraveling of cooperation and identify the subset of agents that can form an enforceable cooperative agreement with. This is an important problem, because cooperation is harder to sustain when information of defection, and thus the consequent punishment, transfers slowly through the network structures from a larger community. Chapter 3 examines a model that studies cooperation in a broader strategic context where agents may interact in multiple different domains, or games, simultaneously. Even if a game independently does not give an agent sufficient incentive to play the cooperative action, there may be hope for cooperation when multiple games with compensating asymmetries are put together. Exploiting compensating asymmetries, we can find an institutional arrangement that would either ensure maximum incentives for cooperation or require minimum subsidy to establish sufficient incentives for cooperation. Lastly, Chapter 4 studies a two-layered public good game to empirically examine whether community enforcement through existing bilateral relationships can encourage cooperation in a social dilemma situation. Here, it is found that how the situation is presented matters greatly to real life agents, as their understanding of whether they are in a cooperative or a competitive, strategic setting changes the level of overall cooperation.






Moon, Catherine (2018). Essays on Identification and Promotion of Game-Theoretic Cooperation. Dissertation, Duke University. Retrieved from


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.