Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication.

Abstract

The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase-polymerase complex, DNA polymerase alpha (pol alpha), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol alpha. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol alpha, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10-And-1 interaction interferes with the loading of And-1 and of pol alpha, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol alpha-primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1101/gad.1585607

Publication Info

Zhu, Wenge, Chinweike Ukomadu, Sudhakar Jha, Takeshi Senga, Suman K Dhar, James A Wohlschlegel, Leta K Nutt, Sally Kornbluth, et al. (2007). Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev, 21(18). pp. 2288–2299. 10.1101/gad.1585607 Retrieved from https://hdl.handle.net/10161/8385.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kornbluth

Sally A. Kornbluth

Jo Rae Wright University Distinguished Professor Emerita

Our lab studies the regulation of complex cellular processes, including cell cycle progression and programmed cell death (apoptosis). These tightly orchestrated processes are critical for appropriate cell proliferation and cell death, and when they go awry can result in cancer and degenerative disorders. Within these larger fields, we have focused on understanding the cellular mechanisms that prevent the onset of mitosis prior to the completion of DNA replication, the processes that prevent cell division when the mitotic spindle is disrupted, the signaling pathways that prevent apoptotic cell death in cancer cells and the mechanisms that link cell metabolism to cell death and survival.

In our quest to answer these important cell biological and biochemical questions, we are varied in our use of experimental systems.   Traditionally, we have used cell-free extracts prepared from eggs of the frog Xenopus laevis which can recapitulate cell cycle events and apoptotic processes in vitro. For the study of cell cycle events, extracts are prepared which can undergo multiple rounds of DNA replication and mitosis in vitro. Progression through the cell cycle can be monitored by microscopic observation of nuclear morphology and by biochemically assaying the activity of serine/threonine kinases which control cell cycle transitions.

For the study of apoptosis, modifications in extract preparation have allowed us to produce extracts which can apoptotically fragment nuclei and can accurately reproduce the biochemical events of apoptosis, including internucleosomal DNA cleavage and activation of apoptotic proteases, the caspases.

More recently, we have focused on studying apoptosis and cell cycle progression in mammalian models, both tissue culture cells and mouse models of cancer.  In these studies, we are trying to determine the precise signaling mechanisms used by cancer cells to accelerate proliferation and evade apoptotic cell death mechanisms.   We also endeavor to subvert these mechanisms to therapeutic advantage.   We are particularly interested in links between metabolism and cell death, as high metabolic rates in cancer cells appear to suppress apoptosis to evade chemotherapy-induced cell death.

Finally, we also have several projects using the facile genetics of Drosophila melanogaster to further understand links between metabolism and cell death and also the ways in which mitochondrial dynamics are linked to apoptotic pathways.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.