Interpretable Almost-Matching Exactly with Instrumental Variables

dc.contributor.advisor

Rudin, Cynthia

dc.contributor.advisor

Roy, Sudeepa

dc.contributor.author

Liu, Yameng

dc.date.accessioned

2019-06-07T19:51:32Z

dc.date.available

2019-06-07T19:51:32Z

dc.date.issued

2019

dc.department

Computer Science

dc.description.abstract

We aim to create the highest possible quality of treatment-control matches for categorical data in the potential outcomes framework.

The method proposed in this work aims to match units on a weighted Hamming distance, taking into account the relative importance of the covariates; To match units on as many relevant variables as possible, the algorithm creates a hierarchy of covariate combinations on which to match (similar to downward closure), in the process solving an optimization problem for each unit in order to construct the optimal matches. The algorithm uses a single dynamic program to solve all of the units' optimization problems simultaneously. Notable advantages of our method over existing matching procedures are its high-quality interpretable matches, versatility in handling different data distributions that may have irrelevant variables, and ability to handle missing data by matching on as many available covariates as possible. We also adapt the matching framework by using instrumental variables (IV) to the presence of observed categorical confounding that breaks the randomness assumptions and propose an approximate algorithm which speedily generates high-quality interpretable solutions.We show that our algorithms construct better matches than other existing methods on simulated datasets, produce interesting results in applications to crime intervention and political canvassing.

dc.identifier.uri

https://hdl.handle.net/10161/18938

dc.subject

Computer science

dc.subject

Statistics

dc.subject

Causal inference

dc.subject

Instrumental variables

dc.subject

Interpretable machine learning

dc.subject

Matching

dc.subject

Optimization

dc.title

Interpretable Almost-Matching Exactly with Instrumental Variables

dc.type

Master's thesis

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Liu_duke_0066N_15251.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Liu_duke_0066N_17/Master_s_Thesis_Defense-54-70.pdf
Size:
439.94 KB
Format:
Adobe Portable Document Format

Collections