Discrimination of vanadium from zinc using gene profiling in human bronchial epithelial cells.
Date
2005-12
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We hypothesized that gene expression profiling may discriminate vanadium from zinc in human bronchial epithelial cells (HBECs). RNA from HBECs exposed to vehicle, V (50 microM), or Zn (50 microM) for 4 hr (n = 4 paired experiments) was hybridized to Affymetrix Hu133A chips. Using one-class t-test with p < 0.01, we identified 140 and 76 genes with treatment:control ratios > or = 2.0 or < or = 0.5 for V and Zn, respectively. We then categorized these genes into functional pathways and compared the number of genes in each pathway between V and Zn using Fisher's exact test. Three pathways regulating gene transcription, inflammatory response, and cell proliferation distinguished V from Zn. When genes in these three pathways were matched with the 163 genes flagged by the same statistical filtration for V:Zn ratios, 12 genes were identified. The hierarchical clustering analysis showed that these 12 genes discriminated V from Zn and consisted of two clusters. Cluster 1 genes (ZBTB1, PML, ZNF44, SIX1, BCL6, ZNF450) were down-regulated by V and involved in gene transcription, whereas cluster 2 genes (IL8, IL1A, PTGS2, DTR, TNFAIP3, CXCL3) were up-regulated and linked to inflammatory response and cell proliferation. Also, metallothionein 1 genes (MT1F, MT1G, MT1K) were up-regulated by Zn only. Thus, using microarray analysis, we identified a small set of genes that may be used as biomarkers for discriminating V from Zn. The novel genes and pathways identified by the microarray may help us understand the pathogenesis of health effects caused by environmental V and Zn exposure.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Li, Zhuowei, Jackie Stonehuerner, Robert B Devlin and Yuh-Chin T Huang (2005). Discrimination of vanadium from zinc using gene profiling in human bronchial epithelial cells. Environmental health perspectives, 113(12). pp. 1747–1754. 10.1289/ehp.7947 Retrieved from https://hdl.handle.net/10161/22249.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Yuh-Chin Tony Huang
Closed loop ventilation
Environmental medicine
Oxidative lung injury
COPD
Hyperpolarized 129Xe MRI and regional lung function
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.