Redox mechanisms of cardiomyocyte mitochondrial protection.
Date
2015
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Oxidative and nitrosative stress are primary contributors to the loss of myocardial tissue in insults ranging from ischemia/reperfusion injury from coronary artery disease and heart transplantation to sepsis-induced myocardial dysfunction and drug-induced myocardial damage. This cell damage caused by oxidative and nitrosative stress leads to mitochondrial protein, DNA, and lipid modifications, which inhibits energy production and contractile function, potentially leading to cell necrosis and/or apoptosis. However, cardiomyocytes have evolved an elegant set of redox-sensitive mechanisms that respond to and contain oxidative and nitrosative damage. These responses include the rapid induction of antioxidant enzymes, mitochondrial DNA repair mechanisms, selective mitochondrial autophagy (mitophagy), and mitochondrial biogenesis. Coordinated cytoplasmic to nuclear cell-signaling and mitochondrial transcriptional responses to the presence of elevated cytoplasmic oxidant production, e.g., H2O2, allows nuclear translocation of the Nfe2l2 transcription factor and up-regulation of downstream cytoprotective genes such as heme oxygenase-1 which generates physiologic signals, such as CO that up-regulates Nfe212 gene transcription. Simultaneously, a number of other DNA binding transcription factors are expressed and/or activated under redox control, such as Nuclear Respiratory Factor-1 (NRF-1), and lead to the induction of genes involved in both intracellular and mitochondria-specific repair mechanisms. The same insults, particularly those related to vascular stress and inflammation also produce elevated levels of nitric oxide, which also has mitochondrial protein thiol-protective functions and induces mitochondrial biogenesis through cyclic GMP-dependent and perhaps other pathways. This brief review provides an overview of these pathways and interconnected cardiac repair mechanisms.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Bartz, Raquel R, Hagir B Suliman and Claude A Piantadosi (2015). Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol, 6. p. 291. 10.3389/fphys.2015.00291 Retrieved from https://hdl.handle.net/10161/13589.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Claude Anthony Piantadosi
Dr. Piantadosi's laboratory has special expertise in the pathogenic mechanisms of acute organ failure, particularly acute lung injury (ALI), with an emphasis on the molecular regulatory roles of the physiological gases— oxygen, carbon monoxide, and nitric oxide— as they relate to the damage responses to acute inflammation. The basic science focuses on oxidative processes and redox-regulation, especially the molecular mechanisms by which reactive oxygen and nitrogen species transmit biological signals involved in the maintenance of energy metabolism and mitochondrial health, but also contribute to pathogenesis and to the resolution of tissue injury.
Clinically, ALI and the related syndrome of multiple organ failure has a high mortality, which is related to the host inflammatory response, but is not well understood scientifically; thus, the laboratory is devoted to understanding these mechanisms in the context of the host response to relevant but well-controlled experimental manipulations including hyperoxia, bacterial infections, toxic drugs, and cytokine/chemokine signals. The approach relies on animal models, mainly transgenic and knockout mice, and cell models, especially lung and heart cells to evaluate and understand the physiology, pathology, and cell and molecular biology of the injury responses, to test independent and integrated mechanisms, and to devise interventions to prevent damage.
Apart from the lung, significant work is devoted to understanding damage to the heart, brain, liver, and kidney caused by these immune mechanisms, specifically emphasizing the role of mitochondria, key targets and sources of oxidative damage. This damage compromises their ability to support energy homeostasis and advanced cellular functions, and impacts on the important roles these organelles play in cell death by apoptosis and necrosis as well as in the resolution of cellular damage and inflammation.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.