Dual controls on carbon loss during drought in peatlands
Date
2015-01-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
© 2015 Macmillan Publishers Limited. Peatlands store one-third of global soil carbon. Drought/drainage coupled with climate warming present the main threat to these stores. Hence, understanding drought effects and inherent feedbacks related to peat decomposition has been a primary global challenge. However, widely divergent results concerning drought in recent studies challenge the accepted paradigm that waterlogging and associated anoxia are the overarching controls locking up carbon stored in peat. Here, by linking field and microcosm experiments, we show how previously unrecognized mechanisms regulate the build-up of phenolics, which protects stored carbon directly by reducing phenol oxidase activity during short-term drought and, indirectly, through a shift from low-phenolic Sphagnum/herbs to high-phenolic shrubs after long-term moderate drought. We demonstrate that shrub expansion induced by drought/warming in boreal peatlands might be a long-term self-adaptive mechanism not only increasing carbon sequestration but also potentially protecting historic soil carbon. We therefore propose that the projected 'positive feedback loop'between carbon emission and drought in peatlands may not occur in the long term.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Wang, H, CJ Richardson and M Ho (2015). Dual controls on carbon loss during drought in peatlands. Nature Climate Change, 5(6). pp. 584–587. 10.1038/nclimate2643 Retrieved from https://hdl.handle.net/10161/15705.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Curtis J. Richardson
Curtis J. Richardson is Professor of Resource Ecology and founding Director of the Duke University Wetland Center in the Nicholas School of the Environment. Dr. Richardson earned his degrees from the State University of New York and the University of Tennessee.
His research interests in applied ecology focus on long-term ecosystem response to large-scale perturbations such as climate change, toxic materials, trace metals, flooding, or nutrient additions. He has specific interests in phosphorus nutrient dynamics in wetlands and the effects of environmental stress on plant communities and ecosystem functions and services. The objectives of his research are to utilize ecological principles to develop new approaches to environmental problem solving. The goal of his research is to provide predictive models and approaches to aid in the management of ecosystems. Recent research activities: 1) wetland restoration of plant communities and its effects on regional water quality and nutrient biogeochemical cycles, 2) the development of ecosystem metrics as indices of wetland restoration success, 3) the effects of nanomaterial on wetland and stream ecosystem processes, 4) the development of ecological thresholds along environmental gradients, 5) wetland development trends and restoration in coastal southeastern United States, 6) the development of an outdoor wetland and stream research and teaching laboratory on Duke Forest, 7) differential nutrient limitation (DNL) as a mechanism to overcome N or P limitations across trophic levels in wetland ecosystems, and 8) carbon sequestration in coastal North Carolina pocosins.Richardson oversees the main analytical lab in NSOE, which is open to students and faculty. Dr. Richardson has been listed in Who's Who in Science™ annually since 1989 and was elected President of the Society of Wetland Scientists in 1987-88. He has served on many editorial review committees for peer-reviewed scientific journals, and he is a past Chair of the Nicholas School Division of Environmental Sciences and Policy. Dr. Richardson is a Fellow of the American Association for the Advancement of Science, the Society of Wetland Scientists, and the Soil Science Society of America.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.