Bayesian Methods for Two-Sample Comparison
Date
2015
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Two-sample comparison is a fundamental problem in statistics. Given two samples of data, the interest lies in understanding whether the two samples were generated by the same distribution or not. Traditional two-sample comparison methods are not suitable for modern data where the underlying distributions are multivariate and highly multi-modal, and the differences across the distributions are often locally concentrated. The focus of this thesis is to develop novel statistical methodology for two-sample comparison which is effective in such scenarios. Tools from the nonparametric Bayesian literature are used to flexibly describe the distributions. Additionally, the two-sample comparison problem is decomposed into a collection of local tests on individual parameters describing the distributions. This strategy not only yields high statistical power, but also allows one to identify the nature of the distributional difference. In many real-world applications, detecting the nature of the difference is as important as the existence of the difference itself. Generalizations to multi-sample comparison and more complex statistical problems, such as multi-way analysis of variance, are also discussed.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Soriano, Jacopo (2015). Bayesian Methods for Two-Sample Comparison. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9859.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.