Perceptions of Competence, Strength, and Age Influence Voters to Select Leaders with Lower-Pitched Voices.

Loading...
Thumbnail Image

Date

2015-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

14
views
7
downloads

Citation Stats

Attention Stats

Abstract

Voters prefer leaders with lower-pitched voices because they are perceived as stronger, having greater physical prowess, more competent, and having greater integrity. An alternative hypothesis that has yet to be tested is that lower-pitched voices are perceived as older and thus wiser and more experienced. Here the relationships between candidate voice pitch, candidate age, and electoral success are examined with two experiments. Study 1 tests whether voters discriminate on candidate age. The results show that male and female candidates in their 40s and 50s, the time in the lifecycle when voice pitch is at its lowest, are preferred over candidates in their 30s, 60s, and 70s. Study 2 shows that the preference for leaders with lower-pitched voices correlates with the perception that speakers with lower voices are stronger, more competent, and older, but the influence of perception of age on vote choice is the weakest of the three.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0133779

Publication Info

Klofstad, Casey A, Rindy C Anderson and Stephen Nowicki (2015). Perceptions of Competence, Strength, and Age Influence Voters to Select Leaders with Lower-Pitched Voices. PloS one, 10(8). p. e0133779. 10.1371/journal.pone.0133779 Retrieved from https://hdl.handle.net/10161/26529.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Nowicki

Stephen Nowicki

Professor of Biology

Our lab studies animal communication, asking both proximate and ultimate questions about how signaling systems function and how they evolve. Most of our work is done with birds, although lab members have studied a variety of other taxa. One major theme that runs through our work is to understand how signal reliability (“honesty”) is maintained in the face of the competing evolutionary interests of signal senders and receivers. We use both laboratory experiments and field-based analyses to test hypotheses about the costs of signal production, which theory suggests are necessary to maintain reliability. For example, we have demonstrated that the reliability of birdsong as a signal of quality in the context of mate choice is maintained by variation in the response of young birds to early developmental stress, which in turn affects brain development and song learning. Another theme that runs through our work concerns how animals themselves perceive signals, in particular the role of categorical perception in communication. Our work here began with birdsong, for example demonstrating context-dependent variation in category boundaries that define the smallest acoustic units of song (“notes”), and identifying categorical responses of neurons in the “song system” of the brain to variation in those notes. More recently, we have begun to study categorical perception in visual signaling, demonstrating for example that the carotenoid-based orange-red coloration commonly used in assessment signaling may be perceived categorically. This finding illustrates the connection between our interests in perception and reliability, given that canonical models of reliability assume continuous perception.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.