Local Real-Time Forecasting of Ozone Exposure using Temperature Data

Loading...
Thumbnail Image

Date

2017-05-08

Authors

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

190
views
201
downloads

Abstract

Rigorous and prompt assessment of ambient ozone exposure is important for inform- ing the public about ozone levels that may lead to adverse health effects. In this paper, we make use of hierarchical modeling to forecast 8-hour average ozone exposure. Our contribution is to show how incorporating temperature data in addition to observed ozone can significantly improve forecast accuracy, as measured by predictive mean squared error and empirical coverage. Furthermore, our model meets the objective of forecasting in real-time. These advantages are illustrated through modeling data collected at the Village Green monitoring station in Durham, North Carolina.

Description

Provenance

Citation

Citation

Lu, Lucy (2017). Local Real-Time Forecasting of Ozone Exposure using Temperature Data. Honors thesis, Duke University. Retrieved from https://hdl.handle.net/10161/14297.


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.