Reduction in Mortality after Umbilical Cord Blood Transplantation in Children Over a 20-Year Period (1995-2014).

Abstract

Infections and graft-versus-host disease (GVHD) have historically resulted in high mortality among children undergoing umbilical cord blood transplantation (UCBT). However, recent advances in clinical practice have likely improved outcomes of these patients. We conducted a retrospective cohort study of children (<18years of age) undergoing UCBT at Duke University between January 1, 1995 and December 31, 2014. We compared 2-year all-cause and cause-specific mortality during 3 time periods based on year of transplantation (1995 to 2001, 2002 to 2007, and 2008 to 2014). We used multivariable Cox regression to identify demographic and UCBT characteristics that were associated with all-cause mortality, transplantation-related mortality, and death from invasive aspergillosis after adjustment for time period. During the 20-year study period 824 children underwent UCBT. Two-year all-cause mortality declined from 48% in 1995 to 2001 to 30% in 2008 to 2014 (P = .0002). White race and nonmalignant UCBT indications were associated with lower mortality. Black children tended to have a higher risk of death for which GVHD (18% versus 11%; P = .06) or graft failure (9% versus 3%; P = .01) were contributory than white children. Comparing 2008 to 2014 with 1995 to 2001, more than half (59%) of the reduced mortality was attributable to a reduction in infectious mortality, with 45% specifically related to reduced mortality from invasive aspergillosis. Antifungal prophylaxis with voriconazole was associated with lower mortality from invasive aspergillosis than low-dose amphotericin B lipid complex (hazard ratio, .09; 95% confidence interval, .01 to .76). With the decline in mortality from invasive aspergillosis, adenovirus and cytomegalovirus have become the most frequentinfectious causes of death in children after UCBT. Advances in clinical practice over the past 20years improved survival of children after UCBT. Reduced mortality from infections, particularly invasive aspergillosis, accounted for the largest improvement in survival and was associated with use of voriconazole for antifungal prophylaxis.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.bbmt.2018.11.018

Publication Info

Spees, Lisa P, Paul L Martin, Joanne Kurtzberg, Andre Stokhuyzen, Lauren McGill, Vinod K Prasad, Timothy A Driscoll, Suhag H Parikh, et al. (2019). Reduction in Mortality after Umbilical Cord Blood Transplantation in Children Over a 20-Year Period (1995-2014). Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 25(4). pp. 756–763. 10.1016/j.bbmt.2018.11.018 Retrieved from https://hdl.handle.net/10161/24602.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Martin

Paul Langlie Martin

Professor of Pediatrics

For most of my career in Pediatric Hematology/Oncology I have focused on the use of stem cell transplant for the treatment of pediatric leukemias (ALL, AML, CML and JMML) and other non-malignant blood disorders, such as sickle cell disease, hemaphagocytic disorders, Wiskott-Aldrich, aplastic anemia, Diamond-Blackfan Anemia, as well as inherited metabolic diseases. In addition to focusing on determining the best use of stem cell transplants for these disorders, I have also been involved in clinical research investigating the prevention and treatment of transplant related morbidity, particularly veno-occlusive disease of the liver, infections and diffuse alveolar hemorrhage. As study chair for the Children's Oncology Group protocol 9904, I was involved in the development, implementation and analysis of a large, international frontline study of childhood acute lymphoblastic leukemia. Results from this study show that a significant number of children with certain favorable cytogenetic abnormalities in their leukemic cells and who have a rapid response to their initial chemotherapy can expect to have a >95% chance of cure when treated with relatively low intensity chemotherapy.  

I have concentrated on providing high quality care for high risk leukemia patients who require high intensity therapies, such as stem cell transplant and immunotherapy.  As a member of the Pediatric Transplant and Cellular Therapy Division I provide clinical care for these patients.  As a member of various cooperative groups and local PI for several drug trials, I have worked to provide better care and more specific therapies for the toxicities associated with stem cell transplant.  

I have also collaborated with the Pediatric Immunology Division to provide a life-saving therapy for a small group of patients with thymic dysfunction, which causes severe immunodeficiency.  Our clinical team now provides support during these patients hospital admissions for donor thymus tissue implantation.  We once again achieved a new record for the number of implanted patients during the 2022-2023 academic year.

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.

Prasad

Vinod K. Prasad

Consulting Professor in the Department of Pediatrics

1. Expanding the role of umbilical cord blood transplants for inherited metabolic disorders.
2. Impact of histocompatibility and other determinants of alloreactivity on clinical outcomes of unrelated cord blood transplants.
3. Studies to analyse the impact of Killer Immunoglobulin receptors on the outcomes of hematopoietic stem cell transplantation utilizing haploidentical, CD34 selected, familial grafts.
4. Propective longitudinal study of serial monitoring of adenovirus in allogenic transpants(SMAART)patients.
5. Use of mesenchymal stem cells for the treatment of GVHD

Driscoll

Timothy Alan Driscoll

Assistant Professor of Pediatrics

Dr. Driscoll participates in multi-institutional studies for the treatment of high risk neuroblastoma patients using high dose chemotherapy with stem cell transplant and the development of new therapies for high risk neuroblastoma patients.

Sung

Anthony D Sung

Associate Professor of Medicine

I am dedicated to the treatment of hematologic malignancies through cellular therapies such as hematopoietic stem cell transplantation (HCT). My research focuses on strategies to reduce complications of HCT and ranges from preclinical studies using murine models of HCT to Phase 1 and Phase 2 clinical trials. Areas of interest include the role of the microbiota (the trillions of bacteria living in and on our bodies), nutrition, and exercise in modulating HCT outcomes such as graft-versus-host disease (GVHD) and infections. In addition to advancing new pharmacological and cellular immunotherapies in support of these goals, we also are developing mobile health technologies (mHealth) to monitor patients at home, both as part of our innovative home transplant program as well as to improve follow up care of all our patients when they return home after transplant.

Proia

Alan David Proia

Professor of Pathology

My research interests are focused on the pathology and genesis of diseases affecting the eye and adjacent structures.  

Kelly

Matthew Kelly

Associate Professor of Pediatrics

My research is broadly focused on elucidating the complex interactions that exist between the host microbiome and exogenous pathogens that cause infections in children. We have several ongoing projects evaluating: 1) the impact of the upper respiratory microbiome on the risk of colonization and invasion by bacterial respiratory pathogens among infants in Botswana; 2) associations between the gut microbiome of pediatric stem cell transplant recipients and the risk of infections (bloodstream infection, C. difficile infection) and graft-versus-host disease; and 3) the role of the gut and respiratory microbiomes in mediating COVID-19 infection susceptibility and disease severity in children. Ultimately, I aim to develop strategies that use targeted modification of the microbiome for the prevention of infections in children.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.