Characterizing the Relationship Between Cell-Cycle Progression and a Transcriptional Oscillator

Loading...
Thumbnail Image

Date

2013

Authors

Bristow, Sara Lynn

Advisors

Haase, Steven B

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

276
views
356
downloads

Abstract

The cell division cycle is the process in which the entirety of a cell's contents is duplicated completely and then equally segregated into two identical daughter cells. The order of the steps in the cell cycle must be followed with fidelity to guarantee two viable cells. Understanding the regulatory mechanisms that control cell-cycle events remains to be a fundamental question in cell biology. In this dissertation, I explore the mechanisms that coordinate and regulate cell-cycle progression in the budding yeast, Saccharomyces cerevisiae.

Cell-cycle events have been shown to be triggered by oscillations in the activity of cyclin dependent kinases (CDKs) when bound to cyclins. However, several studies have shown that some cell-cycle events, such as periodic transcription, can continue in the absence of CDK activity. How are periodic transcription and other cell-cycle events coupled to each other during a wild-type cell cycle? Currently, two models of cell-cycle regulation have been proposed. One model hypothesizes that oscillations in CDK activity controls the timing of cell-cycle events, including periodic transcription. The second model proposes that a transcription factor (TF) network oscillator controls the timing of cell-cycle events, via proper timing of gene expression, including cyclins. By measuring global gene expression dynamics in cells with persistent CDK activity, I show that periodic transcription continues. This result fits with the second model of cell-cycle regulation. Further, I show that during a wild-type cell cycle, checkpoints are responsible for arresting the bulk of periodic transcription. This finding adds a new layer of regulation to the second model, providing a mechanism that coordinates cell-cycle events with a TF network oscillator. Taken together, these data provide further insight into the regulation of the cell cycle.

Description

Provenance

Citation

Citation

Bristow, Sara Lynn (2013). Characterizing the Relationship Between Cell-Cycle Progression and a Transcriptional Oscillator. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8036.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.