Causes and Consequences of Recombination Rate Variation
Date
2014
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Recombination is the process in which genetic material is exchanged between one's homologous chromosome pairs during egg or sperm development (meiosis). Recombination is necessary for proper segregation of chromosomes during meiosis, and also plays a role in purging deleterious mutations, accelerating adaptation, and influencing the distribution of genomic features over evolutionary time. While recombination is clearly an important process, recombination rate is known to vary within and between individuals, populations, and species. Furthermore, what causes this variation remains relatively unknown. Using empirical and sequenced based estimates of recombination rate for the closely related species Drosophila pseudoobscura and Drosophila miranda, I seek to understand where recombination happens across the genome, to what extent recombination changes between species, and what genomic features are responsible for these changes. These data will deepen our understanding of mechanisms determining the recombination landscape, and shed light on generalized patterns and exceptions of recombination rate variation across the tree of life.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Smukowski Heil, Caitlin (2014). Causes and Consequences of Recombination Rate Variation. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/8683.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.