The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections.

Loading...

Date

2021-12-28

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

42
views
44
downloads

Citation Stats

Attention Stats

Abstract

Motivation

With the coronavirus pandemic still raging, prophylactic-nasal and early-treatment throat-sprays could help prevent infection and reduce viral load. Niclosamide has the potential to treat a broad-range of viral infections if local bioavailability is optimized as mucin-penetrating solutions that can reach the underlying epithelial cells.

Experimental

pH-dependence of supernatant concentrations and dissolution rates of niclosamide were measured in buffered solutions by UV/Vis-spectroscopy for niclosamide from different suppliers (AK Sci and Sigma), as precipitated material, and as cosolvates. Data was compared to predictions from Henderson-Hasselbalch and precipitation-pH models. Optical-microscopy was used to observe the morphologies of original, converted and precipitated niclosamide.

Results

Niclosamide from the two suppliers had different polymorphs resulting in different dissolution behavior. Supernatant concentrations of the "AKSci-polymorph" increased with increasing pH, from 2.53μM at pH 3.66 to 300μM at pH 9.2, reaching 703μM at pH 9.63. However, the "Sigma-polymorph" equilibrated to much lower final supernatant concentrations, reflective of more stable polymorphs at each pH. Similarly, when precipitated from supersaturated solution, or as cosolvates, niclosamide also equilibrated to lower final supernatant concentrations. Polymorph equilibration though was avoided by using a solvent-exchange technique to make the solutions.

Conclusions

Given niclosamide's activity as a host cell modulator, optimized niclosamide solutions could represent universal prophylactic nasal and early treatment throat sprays against COVID19, its more contagious variants, and other respiratory viral infections. They are the simplest and potentially most effective formulations from both an efficacy standpoint as well as manufacturing and distribution, (no cold chain). They now just need testing.

Department

Description

Provenance

Subjects

COVID19, host cell modulation, niclosamide-solubility, pH-dependent-dissolution, universal nasal-throat-spray, variants, viral infections

Citation

Published Version (Please cite this version)

10.1007/s11095-021-03112-x

Publication Info

Needham, David (2021). The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections. Pharmaceutical research, 39(1). pp. 115–141. 10.1007/s11095-021-03112-x Retrieved from https://hdl.handle.net/10161/24485.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Needham

David Needham

Professor Emeritus in the Thomas Lord Department of Mechanical Engineering and Materials Science

Professor Needham has been at Duke since 1987 and over the years has developed many collaborative and scholarly relationships across the campus and Medical School. He holds Faculty and membership appointments as: Associate Professor of Biomedical Engineering; Center for Bioinspired Materials and Material Systems; Center for Biomolecular and Tissue Engineering; Duke Comprehensive Cancer Center; and the Duke Cancer Institute.  Internationally, he holds a joint appointment as Professor of Translational Therapeutics in the School of Pharmacy, at the University of Nottingham, UK.  He also collaborates with preclinical researchers at the Erasmus University Medical Center, in Rotterdam, NL. 
For the past 35 years Needham's Lab has developed and used a platform technology of micropipette manipulation to manipulate single and pairs of micro bubbles, droplets and particles in order to assess their behavior in well-defined fluids and solution conditions.  Recently his research and development has focused on nucleation, growth and stability of nanoparticles.  Applications of these fundamental particle and interfacial studies have primarily focused on advanced drug delivery treatments for cancer and now COVID19 with a nasal and throat spray prophylactic and early treatment regimen.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.