PLEUROCARPOUS MOSSES IN SPACE AND TIME: BIOGEOGRAPHY AND EVOLUTION OF THE HOOKERIALES

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

418
views
745
downloads

Abstract

Morphological characters from the gametophyte and sporophyte generations have been used in land plants to infer relationships and construct classifications, but sporophytes provide the vast majority of data for the systematics of vascular plants. In bryophytes both generations are well developed and characters from both are commonly used to classify these organisms. However, because morphological traits of gametophytes and sporophytes can have different genetic bases and experience different selective pressures, taxonomic emphasis on one generation or the other may yield incongruent classifications. The moss order Hookeriales has a controversial taxonomic history because previous classifications have focused almost exclusively on either gametophytes or sporophytes. The Hookeriales provide a model for comparing morphological evolution in gametophytes and sporophytes, and its impact on alternative classification systems. Sometimes, placement of certain groups within Hookeriales remains challenging even at the molecular level. That is the case of the genus Calyptrochaeta. We study diversification dynamics in this genus to elucidate possible mechanisms obscuring its placement and we address biogeographic questions using the Tropical Conservatism scenario as our null hypothesis. Furthermore, to better understand biogeographic patterns in the Southern Hemisphere, infraspecific molecular patterns are compared in two species of the genus Calyptrochaeta (i.e., C. apiculata and C. asplenioides) and vicariance and recent long distance dispersal are tested to explain the disjunct distributions observed in these species.

In this study we reconstruct relationships among pleurocarpous mosses in or associated to the Hookeriales, in Calyptrochaeta, and within Calyptrochaeta. Six molecular markers are explored in total from all three genome compartments to reconstruct the evolution of morphological characters and habitat preferences in our phylogenies. Divergence times are estimated in a Bayesian framework using a relaxed molecular clock, and diversification rates are calculated on the chronograms resulting from these estimations.

As a result, we found that the Hookeriales, as currently circumscribed, are monophyletic and that both sporophyte and gametophyte characters are labile. We documented parallel changes and reversals in traits from both generations. We show that diversification rates in Calyptrochaeta have changed through its history. Also, though we lack support to clearly reject the tropical conservatism hypothesis, our data point to a more complex scenario where both temperate and tropical species can be ancient and give rise to one another, since shifts between tropical and temperate regions seem to be possible in any direction. Finally, we have show that recent long distance dispersal best explains the distribution of both C. apiculata and C. asplenioides in the Southern Hemisphere.

Department

Description

Provenance

Citation

Citation

Pokorny Montero, Cristina Isabel (2012). PLEUROCARPOUS MOSSES IN SPACE AND TIME: BIOGEOGRAPHY AND EVOLUTION OF THE HOOKERIALES. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5586.

Collections


Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.