Novel Technologies for Neutrino and Dark MatterDetection

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

69
views
33
downloads

Abstract

Neutrinos have long been considered a powerful tool for exploring physics beyond the standard model, and have been recognized as having applications in nuclear reactor monitoring and non-proliferation efforts. In particular, there is interest on the part of both the physics and nuclear security communities in a discrete neutrino detector; however, the experimental difficulties associated with detecting neutrinos in a high background environment have hampered past efforts, forcing experiments underground. I discuss my work on a variety of novel neutrino technologies meant to overcome such difficulties. These include the design of a compact optical time projection chamber (TPC) capable of reconstructing inverse beta decays, work on the CHANDLER detector technology systems, the first measurement of nuclear quenching effects in Cerium Bromide scintillator, measurements of nuclear quenching in a gaseous dark matter detector, and a world leading measurement of nuclear quenching in liquid Xenon. Many of these technologies, either singly or in combination, may meet the needs of the nuclear security and dark matter communities and provide a mechanism to reduce backgrounds in fundamental neutrino physics searches.

Department

Description

Provenance

Citation

Citation

Awe, Connor Matson (2022). Novel Technologies for Neutrino and Dark MatterDetection. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/25134.

Collections


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.