A Shared Neural Substrate for Diverse General Anesthetics and Sleep
Date
2019
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Ever since the initial discovery of general anesthetics almost 170 years ago, how general anesthesia (GA) induces loss of consciousness remains a century-long mystery. In addition, whether diverse anesthetic drugs and sleep share a common neural pathway is hotly debated and largely unknown. Previous studies have established that many GA drugs inhibit neural activity through targeting GABA receptors. Here, by using Fos staining, ex vivo brain slice recording, and eventually in vivo multichannel extracellular electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of peptidergic neuroendocrine cells, which are surprisingly and persistently activated by multiple classes of GA drugs. Strikingly, chemogenetic or optogenetic stimulation of these anesthesia-activated neurons (AANs) strongly potentiated slow-wave sleep and prolonged GA, whereas conditional ablation through diphtheria toxin receptor strategy or inhibition of AANs with optogenetics led to reduced slow-wave oscillation in the brain, significant loss of slow-wave and rapid-eye movement sleep, and shortened durations under GA. Together, these findings identify a previously unknown common neural substrate underlying diverse GA drugs and natural sleep, and further illustrate a crucial role of the neuroendocrine system in regulating global brain states.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Jiang-Xie, Li-Feng (2019). A Shared Neural Substrate for Diverse General Anesthetics and Sleep. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/19858.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.