Analyzing Stratified Spaces Using Persistent Versions of Intersection and Local Homology
Date
2008-08-05
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
This dissertation places intersection homology and local homology within the framework of persistence, which was originally developed for ordinary homology by Edelsbrunner, Letscher, and Zomorodian. The eventual goal, begun but not completed here, is to provide analytical tools for the study of embedded stratified spaces, as well as for high-dimensional and possibly noisy datasets for which the number of degrees of freedom may vary across the parameter space. Specifically, we create a theory of persistent intersection homology for a filtered stratified space and prove several structural theorems about the pair groups asso- ciated to such a filtration. We prove the correctness of a cubic algorithm which computes these pair groups in a simplicial setting. We also define a series of intersec- tion homology elevation functions for an embedded stratified space and characterize their local maxima in dimension one. In addition, we develop a theory of persistence for a multi-scale analogue of the local homology groups of a stratified space at a point. This takes the form of a series of local homology vineyards which allow one to assess the homological structure within a one-parameter family of neighborhoods of the point. Under the assumption of dense sampling, we prove the correctness of this assessment at a variety of radius scales.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Bendich, Paul (2008). Analyzing Stratified Spaces Using Persistent Versions of Intersection and Local Homology. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/680.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.