Development and Characterization of Monovalent and Bivalent RNA Aptamers Targeting the Common Pathway of Coagulation

Thumbnail Image




Soule, Erin Elizabeth


Sullenger, Bruce A
Haystead, Timothy

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



Anticoagulant agents are commonly used drugs to reduce blood coagulation in acute and chronic clinical settings. Many of these drugs target the common pathway of coagulation because it is critical for thrombin generation and disruption of this portion of the pathway has profound effects on the hemostatic process. Currently available drugs for these indications struggle with balancing desired activity with immunogenicity and poor reversibility or irreversibility in the event of hemorrhage. While improvements are being made with the current drugs, new drugs with better therapeutic indices are needed for surgical intervention and chronic indications to prevent thrombosis from occurring.

A class of therapeutics known as aptamers may be able to meet the need for safer anticoagulant agents. Aptamer are short single-stranded RNA oligonucleotides that adopt specific secondary and tertiary structures based upon their sequence. They can be generated to both enzymes and cofactors because they derive their inhibitory activity by blocking protein-protein interactions, rather than active site inhibition. They inhibit their target proteins with a high level of specificity and bind with high affinity to their target. Additionally, they can be reversed using two different antidote approaches, specific oligonucleotide antidotes, or with cationic, “universal” antidotes. The reversal of their activity is both rapid and durable.

The ability of aptamers to be generated to cofactors has been conclusively proven by generating an aptamer targeting the common pathway coagulation cofactor, Factor V (FV). We developed two aptamers with anticoagulant ability that bind to both FV and FVa, the active cofactor. Both aptamers were truncated to smaller functional sizes and had specific point mutant aptamers developed for use as controls. The anticoagulant activity of both aptamer-mutant pairs was characterized using plasma-based clotting assays and whole blood assays. The mechanism of action resulting in anticoagulant activity was assessed for one aptamer. The aptamer was found to block FVa docking to membrane surfaces, a mechanism not previously observed in any of our other anticoagulant aptamers.

To explore development of aptamers as anticoagulant agents targeting the common pathway for surgical interventions, we fused two anticoagulant aptamers targeting Factor X and prothrombin into a single molecule. The bivalent aptamer was truncated to a minimal size while maintaining robust anticoagulant activity. Characterization of the bivalent aptamer in plasma-based clotting assays indicated we had generated a very robust anticoagulant therapeutic. Furthermore, we were able to simultaneously reverse the activity of both aptamers with a single oligonucleotide antidote. This rapid and complete reversal of anticoagulant activity is not available in the antithrombotic agents currently used in surgery.






Soule, Erin Elizabeth (2016). Development and Characterization of Monovalent and Bivalent RNA Aptamers Targeting the Common Pathway of Coagulation. Dissertation, Duke University. Retrieved from


Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.