Adaptive Mixture Modelling Metropolis Methods for Bayesian Analysis of Non-linear State-Space Models.
Date
2010-06-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke
Mike West
Here is my personal web page (this scholars page is not maintained)
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.