Accessing Long-lived Nuclear Spin States in Chemically Equivalent Spin Systems: Theory, Simulation, Experiment and Implication for Hyperpolarization
Date
2014
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Recent work has shown that hyperpolarized magnetic resonance spectroscopy (HP-MRS) can trace in vivo metabolism of biomolecules and is therefore extremely promising for diagnostic imaging. The most severe challenge this technique faces is the short signal lifetime for hyperpolarization, which is dictated by the spin-lattice (T1) relaxation. In this thesis we show with theory, simulation and experiment that the long-lived nuclear spin states in chemically equivalent or near equivalent spin systems offer a solution to this problem. Spin polarization that has lifetime much longer than T1 (up to 70-fold) has been demonstrated with pulse sequence techniques that are compatible with clinical imaging settings. Multiple classes of molecules have been demonstrated to sustain such long-lived hyperpolarization.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Citation
Feng, Yesu (2014). Accessing Long-lived Nuclear Spin States in Chemically Equivalent Spin Systems: Theory, Simulation, Experiment and Implication for Hyperpolarization. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/9085.
Collections
Dukes student scholarship is made available to the public using a Creative Commons Attribution / Non-commercial / No derivative (CC-BY-NC-ND) license.