Single-cell landscape analysis unravels molecular programming of the human B cell compartment in chronic GVHD.

Abstract

Alloreactivity can drive autoimmune syndromes. After allogeneic hematopoietic stem cell transplantation (allo-HCT), chronic graft-versus-host disease (cGVHD), a B cell-associated autoimmune-like syndrome, commonly occurs. Because donor-derived B cells continually develop under selective pressure from host alloantigens, aberrant B cell receptor (BCR) activation and IgG production can emerge and contribute to cGVHD pathobiology. To better understand molecular programing of B cells in allo-HCT, we performed scRNA-Seq analysis on high numbers of purified B cells from patients. An unsupervised analysis revealed 10 clusters, distinguishable by signature genes for maturation, activation, and memory. Within the memory B cell compartment, we found striking transcriptional differences in allo-HCT patients compared with healthy or infected individuals, including potentially pathogenic atypical B cells (ABCs) that were expanded in active cGVHD. To identify intrinsic alterations in potentially pathological B cells, we interrogated all clusters for differentially expressed genes (DEGs) in active cGVHD versus patients who never had signs of immune tolerance loss (no cGVHD). Active cGVHD DEGs occurred in both naive and BCR-activated B cell clusters. Remarkably, some DEGs occurred across most clusters, suggesting common molecular programs that may promote B cell plasticity. Our study of human allo-HCT and cGVHD provides understanding of altered B cell memory during chronic alloantigen stimulation.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1172/jci.insight.169732

Publication Info

Poe, Jonathan C, Jiyuan Fang, Dadong Zhang, Marissa R Lee, Rachel A DiCioccio, Hsuan Su, Xiaodi Qin, Jennifer Y Zhang, et al. (2023). Single-cell landscape analysis unravels molecular programming of the human B cell compartment in chronic GVHD. JCI insight, 8(11). p. e169732. 10.1172/jci.insight.169732 Retrieved from https://hdl.handle.net/10161/31277.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Zhang

Jennifer Yunyan Zhang

Professor in Dermatology

Epidermis of the skin constitutes the largest organ and the outer most barrier of the body. It is one of the few organs that undergo lifelong self-renewal through a tight balance of cell growth, differentiation, and programmed cell death. Deregulation of this balance is manifested in many diseases, including various immune diseases and cancer. 

Our lab is focused on 3 interrelated topics:

1. Gene regulation of epithelial cell proliferation and differentiation

Using regenerated human skin tissues and murine genetic models, we have demonstrated important functions NF-kB and AP-1 gene regulators in epidermal cell growth and differentiation. Currently, our efforts are focused on understating how loss-of-function of CYLD, a deubiquitinase and tumor suppressor, leads to the development of hair follicle defects, skin inflammation, and cancer. Specifically, we want to determine how CYLD integrates NF-kB, AP1, Myc, and other transcription factors to control epidermal cell growth and lineage differentiation.

De novo skin regeneration is life-saving procedure for severely burned patients and lethal genetic skin diseases such as epidermal bullosa. An additional aspect of our study is to improve new skin regeneration techniques and to create experimental skin disease models with gene transduced keratinocytes, as illustrated below.

2. Keratinocytes as instigators of inflammatory responses

Keratinocytes are constantly challenged by external insults, as well as immune cells. Disarray of the crosstalk between keratinocytes and immune cells underlies various immune diseases, including dermatitis, psoriasis, and cutaneous graft-versus-host disease (GVHD). GVHD is a common complication and the leading cause of non-relapse mortality among patients after receiving allogenic hematopoietic stem cell transplantation.  The skin is the most commonly affected organ in both the acute and chronic forms of this disease.  Treatment options for GVHD are limited and the current standard therapy is high dose systemic corticosteroid which is itself associated with significant morbidity. Our goal is to understand how keratinocytes contribute to the progression of GVHD, and may therefore be targeted to mitigate the disease.

3. Ubiquitination enzymes in melanoma

Melanoma most lethal and difficult to treat skin cancer. In the recent years, BRAF/MEK-targeted therapies have produced exciting results, but they suffer from short duration. Our goal is to uncover novel mechanisms crucial for melanoma malignancy. Specifically, we want to understand how ubiquitination enzymes contribute to melanoma growth. Previously, we have demonstrated that CYLD inhibits melanoma growth through suppression of JNK/AP1 and b1-integrin signaling pathways. In contrast, UBE2N, a K63-Ubiquitin conjusage, promotes melanoma growth in part through activation of the MEK/FRA/SOX10 signaling cascade. Currently, our efforts are focused on understanding how UBE2N and other ubiquitin enzymes regulate the MAPK signaling pathway and whether they can be targeted for melanoma therapy.

Bracken

Sonali Bracken

House Staff
Horwitz

Mitchell Eric Horwitz

Professor of Medicine

Allogeneic stem cell transplantation with a focus on the use of umbilical cord blood grafts; Allogenic stem cell transplantation for Sickle Cell Disease; Prevention of acute and chronic graft versus host disease; Improving immune recovery following alternative donor stem cell transplantation using donor graft manipulation.

Chao

Nelson Jen An Chao

Donald D. and Elizabeth G. Cooke Cancer Distinguished Research Professor

My research interests are in two broad areas, clinical hematopoietic stem cell and cord blood transplantation and in the laboratory studies related to graft vs. host disease and immune reconstitution. On the clinical side we are currently conducting approximately 50 different clinical protocols ranging from preparatory regimens, supportive care studies and disease specific protocols. Most of these clinical studies are centered around studies of the sources of stem cells and the methods to improve the long term outcome. There are exploratory protocols for novel therapies such as dendritic cell therapy for several malignancies, antiangiogenesis therapy, graft engineering to prevent graft-versus-host disease and antigen specific T cells or non specific NK cells to prevent relapse. Moreover a strong focus of the program is to develop cord-blood transplantation for adult patients with hematologic malignancies. The laboratory studies center on understanding the immunological events that occur with graft-vs-host disease and methods to prevent this disease. The current efforts focus on understanding murine reconstitution following transplantation, use of a peptide polymer to block MHC class II recognition of minor histocompatibility antigens, use of T cell engineering to prevent graft-versus-host disease at the same time preserving a graft-versus-malignancy effect.

For more information see http://ed-media.mc.duke.edu/BMT.nsf

Cardones

Adela Rambi Guanco Cardones

Adjunct Associate Professor in the Department of Dermatology
Xie

Jichun Xie

Associate Professor of Biostatistics & Bioinformatics
Owzar

Kouros Owzar

Professor of Biostatistics & Bioinformatics

cancer pharmacogenomics
drug induced neuropathy, neutropenia and hypertension
statistical genetics
statistical methods for high-dimensional data
copulas
survival analysis
statistical computing

Sarantopoulos

Stefanie Sarantopoulos

Professor of Medicine

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.