Molecular Characterization of Genetic and Epigenetic Alterations in Gliomas
Date
2012
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Glioma development and progression are driven by complex genetic alterations, including point mutations and gain or loss of genomic copy number, as well as epigenetic aberrations, including DNA methylation and histone modifications. However, the molecular mechanisms underlying the causes and effects of these alterations are poorly understood, and improved treatments are greatly needed. Here, we report a comprehensive evaluation of the recurrent genomic alterations in gliomas and further dissect the molecular effects of the most frequently-occurring genomic events. First, we performed a multifaceted genomic analysis to identify genes targeted by copy number alteration in glioblastoma, the most aggressive malignant glioma. We identify EGFR negative regulator, ERRFI1, as a glioblastoma-targeted gene within the minimal region of deletion in 1p36.23. Furthermore, we demonstrate that Aurora-A kinase substrate, TACC3, displays gain of copy number on 4p16.3 and is overexpressed in a grade-specific pattern. Next, using a gene targeting approach, we knocked-in a single copy of the most frequently observed point mutation in gliomas, IDH1R132H/WT, into a human cancer cell line. We show that heterozygous expression of the IDH1R132H allele is sufficient to induce the genome-wide alterations in DNA methylation characteristic of these tumors. Together, these data provide insight on genetic and epigenetic alterations which drive human gliomas.
Type
Department
Description
Provenance
Citation
Permalink
Citation
Duncan, Christopher Gentry (2012). Molecular Characterization of Genetic and Epigenetic Alterations in Gliomas. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/6115.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.