Using Transverse Optical Patterns for Ultra-Low-Light All-Optical Switching

dc.contributor.advisor

Gauthier, Daniel J

dc.contributor.author

Dawes, Andrew M. C.

dc.date.accessioned

2008-05-14T16:29:00Z

dc.date.available

2008-05-14T16:29:00Z

dc.date.issued

2008-04-24

dc.department

Physics

dc.description.abstract

All-optical devices allow improvements in the speed of optical communication and computation systems by avoiding the conversion between the optical and electronic domains. The focus of this thesis is the experimental investigation of a new type of all-optical switch that is based on the control of optical patterns formed by nonlinear interactions between light and matter.

The all-optical switch consists of a pair of light beams that counterpropagate through warm rubidium vapor. These beams induce a nonlinear optical instability that gives rise to mirrorless parametric self-oscillation and generates light in the state of polarization that is orthogonal to that of the pump beams. In the far-field, the generated light forms patterns consisting of two or more spots. To characterize this instability, I observe experimentally the amount of generated power and the properties of the generated patterns as a function of pump beam intensity, frequency, and size. Near an atomic resonance, the instability has a very low threshold: with less than 1~mW of total pump power, >3~$\mu$W of power is generated.

To apply this system to all-optical switching, I observe that the orientation of the generated patterns can be controlled by introducing a symmetry-breaking perturbation to the system. A perturbation in the form of a weak switch beam injected into the nonlinear medium is suitable for controlling the orientation of the generated patterns. The device operates as a switch where each state of the pattern orientation corresponds to a state of the switch, and spatial filtering of the generated pattern defines the output ports of the device. Measurements of the switch response show that it can be actuated by as few as 600~photons. For a switch beam with 1/e field radius $w_0=185,\mu$m, 600 photons correspond to $5.4\times10^{-4}$ photons/\lambdasquared which is comparable to the best reported results from all-optical switches based on electromagnetically-induced transparentcy (EIT). This approach to all-optical switching operates at very low light levels and exhibits cascadability and transistorlike response. Furthermore, the sensitivity is comparable to switches using cold-atom EIT or cavity quantum-electrodynamics techniques but is achieved with a simpler system, requiring only one optical frequency and occurring in warm atomic vapor.

I develop a numerical model for the switch that exhibits patterns that rotate in the presence of a weak applied optical field. Results from this model, and from my experiment, show that the switch response time increases as the input power decreases. I propose that this increase is due to critical slowing down (CSD). Mapping the pattern orientation to a simple one-dimensional system shows that CSD can account for the observed increase in response time at low input power. The ultimate performance of the device is likely limited by CSD and I conclude that the minimum number of photons capable of actuating the switch is between 400 and 600 photons.

dc.identifier.uri

https://hdl.handle.net/10161/604

dc.language.iso

en_US

dc.rights.uri

http://rightsstatements.org/vocab/InC/1.0/

dc.subject

Physics, Optics

dc.subject

all optical

dc.subject

switch

dc.subject

rubidium

dc.subject

hexagon

dc.subject

rotation

dc.title

Using Transverse Optical Patterns for Ultra-Low-Light All-Optical Switching

dc.type

Dissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
D_Dawes_Andrew_a_200805.pdf
Size:
7.66 MB
Format:
Adobe Portable Document Format

Collections