Browsing by Subject "Aspergillus"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Open Access Blood Aspergillus PCR: The Good, the Bad, and the Ugly.(Journal of fungi (Basel, Switzerland), 2020-01) Egger, Matthias; Jenks, Jeffrey D; Hoenigl, Martin; Prattes, JuergenInvasive Aspergillosis (IA) is one of the most common invasive fungal diseases and is accompanied by high morbidity and mortality. In order to maximize patient outcomes and survival, early and rapid diagnosis has been shown to be pivotal. Hence, diagnostic tools aiding and improving the diagnostic process are ambitiously searched for. In this context, polymerase chain reaction (PCR) may represent a potential candidate. Its additional value and benefits in diagnosis have been demonstrated and are scientifically established. Nevertheless, standardized and widespread usage is sparse because several factors influence diagnostic quality and need to be considered in order to optimize diagnostic performance and outcome. In the following review, the current role of PCR in the diagnosis of IA is explored, with special focus on the strengths and limitations of PCR in different settings.Item Open Access Breakthrough invasive fungal infections: Who is at risk?(Mycoses, 2020-10) Jenks, Jeffrey D; Cornely, Oliver A; Chen, Sharon C-A; Thompson, George R; Hoenigl, MartinThe epidemiology of invasive fungal infections (IFIs) in immunocompromised individuals has changed over the last few decades, partially due to the increased use of antifungal agents to prevent IFIs. Although this strategy has resulted in an overall reduction in IFIs, a subset of patients develop breakthrough IFIs with substantial morbidity and mortality in this population. Here, we review the most significant risk factors for breakthrough IFIs in haematology patients, solid organ transplant recipients, and patients in the intensive care unit, focusing particularly on host factors, and highlight areas that require future investigation.Item Open Access Bronchoalveolar lavage Aspergillus Galactomannan lateral flow assay versus Aspergillus-specific lateral flow device test for diagnosis of invasive pulmonary Aspergillosis in patients with hematological malignancies.(The Journal of infection, 2019-03) Jenks, Jeffrey D; Mehta, Sanjay R; Taplitz, Randy; Law, Nancy; Reed, Sharon L; Hoenigl, MartinItem Open Access Calcineurin Inhibitor CN585 Exhibits Off-Target Effects in the Human Fungal Pathogen Aspergillus fumigatus.(Journal of fungi (Basel, Switzerland), 2022-12) Juvvadi, Praveen R; Bobay, Benjamin G; Cole, D Christopher; Awwa, Monaf; Steinbach, William JCalcineurin (CN) is an attractive antifungal target as it is critical for growth, stress response, drug resistance, and virulence in fungal pathogens. The immunosuppressive drugs, tacrolimus (FK506) and cyclosporin A (CsA), are fungistatic and specifically inhibit CN through binding to their respective immunophilins, FK506-binding protein (FKBP12), and cyclophilin (CypA). We are focused on CN structure-based approaches for the development of non-immunosuppressive FK506 analogs as antifungal therapeutics. Here, we examined the effect of the novel CN inhibitor, CN585, on the growth of the human pathogen Aspergillus fumigatus, the most common cause of invasive aspergillosis. Unexpectedly, in contrast to FK506, CN585 exhibited off-target effect on A. fumigatus wild-type and the azole- and echinocandin-resistant strains. Unlike with FK506 and CsA, the A. fumigatus CN, FKBP12, CypA mutants (ΔcnaA, Δfkbp12, ΔcypA) and various FK506-resistant mutants were all sensitive to CN585. Furthermore, in contrast to FK506 the cytosolic to nuclear translocation of the CN-dependent transcription factor (CrzA-GFP) was not inhibited by CN585. Molecular docking of CN585 onto human and A. fumigatus CN complexes revealed differential potential binding sites between human CN versus A. fumigatus CN. Our results indicate CN585 may be a non-specific inhibitor of CN with a yet undefined antifungal mechanism of activity.Item Open Access Coronavirus Disease 2019-Associated Invasive Fungal Infection.(Open forum infectious diseases, 2021-12) Baddley, John W; Thompson, George R; Chen, Sharon C-A; White, P Lewis; Johnson, Melissa D; Nguyen, M Hong; Schwartz, Ilan S; Spec, Andrej; Ostrosky-Zeichner, Luis; Jackson, Brendan R; Patterson, Thomas F; Pappas, Peter GCoronavirus disease 2019 (COVID-19) can become complicated by secondary invasive fungal infections (IFIs), stemming primarily from severe lung damage and immunologic deficits associated with the virus or immunomodulatory therapy. Other risk factors include poorly controlled diabetes, structural lung disease and/or other comorbidities, and fungal colonization. Opportunistic IFI following severe respiratory viral illness has been increasingly recognized, most notably with severe influenza. There have been many reports of fungal infections associated with COVID-19, initially predominated by pulmonary aspergillosis, but with recent emergence of mucormycosis, candidiasis, and endemic mycoses. These infections can be challenging to diagnose and are associated with poor outcomes. The reported incidence of IFI has varied, often related to heterogeneity in patient populations, surveillance protocols, and definitions used for classification of fungal infections. Herein, we review IFI complicating COVID-19 and address knowledge gaps related to epidemiology, diagnosis, and management of COVID-19-associated fungal infections.Item Open Access COVID-19 Associated Pulmonary Aspergillosis (CAPA)-From Immunology to Treatment.(Journal of fungi (Basel, Switzerland), 2020-06) Arastehfar, Amir; Carvalho, Agostinho; van de Veerdonk, Frank L; Jenks, Jeffrey D; Koehler, Philipp; Krause, Robert; Cornely, Oliver A; S Perlin, David; Lass-Flörl, Cornelia; Hoenigl, MartinLike severe influenza, coronavirus disease-19 (COVID-19) resulting in acute respiratory distress syndrome (ARDS) has emerged as an important disease that predisposes patients to secondary pulmonary aspergillosis, with 35 cases of COVID-19 associated pulmonary aspergillosis (CAPA) published until June 2020. The release of danger-associated molecular patterns during severe COVID-19 results in both pulmonary epithelial damage and inflammatory disease, which are predisposing risk factors for pulmonary aspergillosis. Moreover, collateral effects of host recognition pathways required for the activation of antiviral immunity may, paradoxically, contribute to a highly permissive inflammatory environment that favors fungal pathogenesis. Diagnosis of CAPA remains challenging, mainly because bronchoalveolar lavage fluid galactomannan testing and culture, which represent the most sensitive diagnostic tests for aspergillosis in the ICU, are hindered by the fact that bronchoscopies are rarely performed in COVID-19 patients due to the risk of disease transmission. Similarly, autopsies are rarely performed, which may result in an underestimation of the prevalence of CAPA. Finally, the treatment of CAPA is complicated by drug-drug interactions associated with broad spectrum azoles, renal tropism and damage caused by SARS-CoV-2, which may challenge the use of liposomal amphotericin B, as well as the emergence of azole-resistance. This clinical reality creates an urgency for new antifungal drugs currently in advanced clinical development with more promising pharmacokinetic and pharmacodynamic profiles.Item Open Access Immune Parameters for Diagnosis and Treatment Monitoring in Invasive Mold Infection.(Journal of fungi (Basel, Switzerland), 2019-12) Jenks, Jeffrey D; Rawlings, Stephen A; Garcia-Vidal, Carol; Koehler, Philipp; Mercier, Toine; Prattes, Juergen; Lass-Flörl, Cornelia; Martin-Gomez, M Teresa; Buchheidt, Dieter; Pagano, Livio; Gangneux, Jean-Pierre; van de Veerdonk, Frank L; Netea, Mihai G; Carvalho, Agostinho; Hoenigl, MartinInfections caused by invasive molds, including Aspergillus spp., can be difficult to diagnose and remain associated with high morbidity and mortality. Thus, early diagnosis and targeted systemic antifungal treatment remains the most important predictive factor for a successful outcome in immunocompromised individuals with invasive mold infections. Diagnosis remains difficult due to low sensitivities of diagnostic tests including culture and other mycological tests for mold pathogens, particularly in patients on mold-active antifungal prophylaxis. As a result, antifungal treatment is rarely targeted and reliable markers for treatment monitoring and outcome prediction are missing. Thus, there is a need for improved markers to diagnose invasive mold infections, monitor response to treatment, and assist in determining when antifungal therapy should be escalated, switched, or can be stopped. This review focuses on the role of immunologic markers and specifically cytokines in diagnosis and treatment monitoring of invasive mold infections.Item Open Access Improving the rates of Aspergillus detection: an update on current diagnostic strategies.(Expert review of anti-infective therapy, 2019-01) Jenks, Jeffrey D; Salzer, Helmut JF; Hoenigl, MartinIntroduction
The spectrum of disease caused by Aspergillus spp. is dependent on the immune system of the host, and ranges from invasive aspergillosis (IA) to chronic pulmonary aspergillosis (CPA). Early and reliable diagnosis of Aspergillus disease is important to decrease associated morbidity and mortality. Areas covered: The following review will give an update on current diagnostic strategies for the diagnosis of IA and CPA. Expert commentary: Several new diagnostics for IA (including point-of-care tests) are now available to complement galactomannan testing. In particular, immunoPET/MRI imaging may be a promising approach for diagnosing IA in the near future. Notably, nearly all new biomarkers and tests for IA have been evaluated in the hematology setting only. Validation of biomarkers and tests is therefore needed for the increasing proportion of patients who develop IA outside the hematology setting. As an important first step, reliable definitions of IA are needed for non-hematology settings as clinical presentation and radiologic findings differ in these settings. CPA diagnosis is based on a combination of radiological findings in chest CT, mycological evidence (e.g. by the Aspergillus-specific IgG assay), exclusion of alternative diagnosis and chronicity. ([18F]FDG) PET/CT and immuno PET/MRI imaging are promising new imaging approaches.Item Open Access Invasive aspergillosis in critically ill patients: Review of definitions and diagnostic approaches.(Mycoses, 2021-09) Jenks, Jeffrey D; Nam, Hannah H; Hoenigl, MartinInvasive aspergillosis (IA) is an increasingly recognised phenomenon in critically ill patients in the intensive care unit, including in patients with severe influenza and severe coronavirus disease 2019 (COVID-19) infection. To date, there are no consensus criteria on how to define IA in the ICU population, although several criteria are used, including the AspICU criteria and new consensus criteria to categorise COVID-19-associated pulmonary aspergillosis (CAPA). In this review, we describe the epidemiology of IA in critically ill patients, most common definitions used to define IA in this population, and most common clinical specimens obtained for establishing a mycological diagnosis of IA in the critically ill. We also review the most common diagnostic tests used to diagnose IA in this population, and lastly discuss the most common clinical presentation and imaging findings of IA in the critically ill and discuss areas of further needed investigation.Item Open Access Performance of the Bronchoalveolar Lavage Fluid Aspergillus Galactomannan Lateral Flow Assay With Cube Reader for Diagnosis of Invasive Pulmonary Aspergillosis: A Multicenter Cohort Study.(Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 2021-10) Jenks, Jeffrey D; Prattes, Juergen; Frank, Johanna; Spiess, Birgit; Mehta, Sanjay R; Boch, Tobias; Buchheidt, Dieter; Hoenigl, MartinBackground
The Aspergillus Galactomannan Lateral Flow Assay (LFA) is a rapid test for the diagnosis of invasive aspergillosis (IA) that has been almost exclusively evaluated in patients with hematologic malignancies. An automated digital cube reader that allows for quantification of results has recently been added to the test kits.Methods
We performed a retrospective multicenter study on bronchoalveolar lavage fluid (BALF) samples obtained from 296 patients with various underlying diseases (65% without underlying hematological malignancy) who had BALF galactomannan (GM) ordered between 2013 and 2019 at the University of California, San Diego, the Medical University of Graz, Austria, and the Mannheim University Hospital, Germany.Results
Cases were classified as proven (n = 2), probable (n = 56), putative (n = 30), possible (n = 45), and no IA (n = 162). The LFA showed an area under the curve (AUC) of 0.865 (95% confidence interval [CI] .815-.916) for differentiating proven/probable or putative IA versus no IA, with a sensitivity of 74% and a specificity of 83% at an optical density index cutoff of 1.5. After exclusion of GM as mycological criterion for case classification, diagnostic performance of the LFA was highly similar to GM testing (AUC 0.892 vs 0.893, respectively). LFA performance was consistent across different patient cohorts and centers.Conclusions
In this multicenter study the LFA assay from BALF demonstrated good diagnostic performance for IA that was consistent across patient cohorts and locations. The LFA may serve a role as a rapid test that may replace conventional GM testing in settings where GM results are not rapidly available.Item Open Access Performance of the Euroimmun Aspergillus Antigen ELISA for the Diagnosis of Invasive Pulmonary Aspergillosis in Bronchoalveolar Lavage Fluid.(Journal of clinical microbiology, 2022-04) Egger, Matthias; Penziner, Samuel; Dichtl, Karl; Gornicec, Max; Kriegl, Lisa; Krause, Robert; Khong, Ethan; Mehta, Sanjay; Vargas, Milenka; Gianella, Sara; Porrachia, Magali; Jenks, Jeffrey D; Venkataraman, Iswariya; Hoenigl, MartinInvasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects mainly immunocompromised hosts. Galactomannan testing from serum and bronchoalveolar lavage fluid (BALF) represents a cornerstone in diagnosing the disease. Here, we evaluated the diagnostic performance of the novel Aspergillus-specific galactomannoprotein (GP) enzyme-linked immunosorbent assay (ELISA; Euroimmun Medizinische Labordiagnostika) compared with the established Platelia Aspergillus GM ELISA (GM; Bio-Rad Laboratories) for the detection of Aspergillus antigen in BALF. Using the GP ELISA, we retrospectively tested 115 BALF samples from 115 patients with clinical suspicion of IPA and GM analysis ordered in clinical routine. Spearman's correlation statistics and receiver operating characteristics (ROC) curve analysis were performed. Optimal cutoff values were determined using Youden's index. Of 115 patients, 1 patient fulfilled criteria for proven IPA, 42 for probable IPA, 15 for putative IPA, 10 for possible IPA, and 47 did not meet criteria for IPA. Sensitivities and specificities for differentiating proven/probable/putative versus no IPA (possible excluded) were 74% and 96% for BALF GP and 90% and 96% for BALF GM at the manufacturer-recommended cutoffs. Using the calculated optimal cutoff value of 12 pg/mL, sensitivity and specificity of the BALF GP were 90% and 96%, respectively. ROC curve analysis showed an area under the curve (AUC) of 0.959 (95% confidence interval [CI] of 0.923 to 0.995) for the GP ELISA and an AUC of 0.960 (95% CI of 0.921 to 0.999) for the GM ELISA for differentiating proven/probable/putative IPA versus no IPA. Spearman's correlation analysis showed a strong correlation between the ELISAs (rho = 0.809, P < 0.0001). The GP ELISA demonstrated strong correlation and test performance similar to that of the GM ELISA and could serve as an alternative test for BALF from patients at risk for IPA.Item Open Access Serum Lateral Flow assay with digital reader for the diagnosis of invasive pulmonary aspergillosis: A two-centre mixed cohort study.(Mycoses, 2021-10) Hoenigl, Martin; Egger, Matthias; Boyer, Johannes; Schulz, Eduard; Prattes, Juergen; Jenks, Jeffrey DBackground
Detection of galactomannan (GM) from bronchoalveolar lavage fluid (BALF) or serum is broadly used for diagnosis of invasive aspergillosis (IA), although the sensitivity of GM from serum is lower in non-neutropenic patients. We evaluated the Aspergillus galactomannan Lateral Flow assay (LFA) with digital readout from serum in a mixed cohort of patients.Methods
We performed a retrospective two-centre study evaluating the LFA from serum of patients with clinical suspicion of IA obtained between 2015 and 2021 at the University of California San Diego and the Medical University of Graz. The sensitivity and specificity was calculated for proven/probable aspergillosis versus no aspergillosis. Correlation with same-sample GM was calculated using Spearman correlation analysis and kappa statistics.Results
In total, 122 serum samples from 122 patients were analysed, including proven IA (n = 1), probable IA or coronavirus-associated pulmonary aspergillosis (CAPA) (n = 27), and no IA/CAPA/non-classifiable (n = 94). At a 0.5 ODI cut-off, the sensitivity and specificity of the LFA was 78.6% and 80.5%. Spearman correlation analysis showed a strong correlation between serum LFA ODI and serum GM ODI (ρ 0.459, p < .0001). Kappa was 0.611 when both LFA and GM were used with a 0.5 ODI cut-off, showing substantial agreement (p < .001).Discussion
The LFA with digital read out from serum showed good performance for the diagnosis of probable/proven aspergillosis, with substantial agreement to GM from serum. Like the LFA from BALF, the LFA from serum may serve as a more rapid test compared to conventional GM, particularly in settings where GM is not readily available.Item Open Access Tissue-Resident Macrophages in Fungal Infections.(Frontiers in immunology, 2017-01) Xu, Shengjie; Shinohara, Mari LInvasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.Item Open Access Treatment of Aspergillosis.(Journal of fungi (Basel, Switzerland), 2018-08) Jenks, Jeffrey D; Hoenigl, MartinInfections caused by Aspergillus spp. remain associated with high morbidity and mortality. While mold-active antifungal prophylaxis has led to a decrease of occurrence of invasive aspergillosis (IA) in those patients most at risk for infection, breakthrough IA does occur and remains difficult to diagnose due to low sensitivities of mycological tests for IA. IA is also increasingly observed in other non-neutropenic patient groups, where clinical presentation is atypical and diagnosis remains challenging. Early and targeted systemic antifungal treatment remains the most important predictive factor for a successful outcome in immunocompromised individuals. Recent guidelines recommend voriconazole and/or isavuconazole for the primary treatment of IA, with liposomal amphotericin B being the first alternative, and posaconazole, as well as echinocandins, primarily recommended for salvage treatment. Few studies have evaluated treatment options for chronic pulmonary aspergillosis (CPA), where long-term oral itraconazole or voriconazole remain the treatment of choice.