Browsing by Subject "Bronchoscopy"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Clinical and radiographic predictors of successful therapeutic bronchoscopy for the relief of malignant central airway obstruction.(BMC pulmonary medicine, 2019-11) Giovacchini, Coral X; Kessler, Edward R; Merrick, Christopher M; Gao, Junheng; Wang, Xiaofei; Wahidi, Momen M; Shofer, Scott L; Cheng, George Z; Mahmood, KamranBACKGROUND:Malignant central airway obstruction (CAO) occurs in approximately 20-30% of patients with lung cancer and is associated with debilitating symptoms and poor prognosis. Multimodality therapeutic bronchoscopy can relieve malignant CAO, though carries risk. Evidence to guide clinicians regarding which patients may benefit from such interventions is sparse. We aimed to assess the clinical and radiographic predictors associated with therapeutic bronchoscopy success in relieving malignant CAO. METHODS:We reviewed all cases of therapeutic bronchoscopy performed for malignant CAO at our institution from January 2010-February 2017. Therapeutic bronchoscopy success was defined as establishing airway patency of > 50%. Patient demographics and baseline characteristics, oncology history, degree of airway obstruction, procedural interventions, and complications were compared between successful and unsuccessful groups. Univariate and multivariate logistic regression identified the significant clinical and radiographic predictors for therapeutic success. The corresponding simple and conditional odds ratio were calculated. A time-to-event analysis with Kaplan-Meier plots was performed to estimate overall survival. RESULTS:During the study period, 301 therapeutic bronchoscopies were performed; 44 (14.6%) were considered unsuccessful. Factors associated with success included never vs current smoking status (OR 5.36, 95% CI:1.45-19.74, p = 0.010), patent distal airway on CT imaging (OR 15.11, 95% CI:2.98-45.83, p < 0.0001) and patent distal airway visualized during bronchoscopy (OR 10.77, 95% CI:3.63-31.95, p < 0.001) in univariate analysis. Along with patent distal airway on CT imaging, increased time from radiographic finding to therapeutic bronchoscopy was associated with lower odds of success in multivariate analysis (OR 0.96, 95% CI:0.92-1.00, p = 0.048). Median survival was longer in the successful group (10.2 months, 95% CI:4.8-20.2) compared to the unsuccessful group (6.1 months, 95% CI:2.1-10.8, log rank p = 0.015). CONCLUSIONS:Predictors associated with successful therapeutic bronchoscopy for malignant CAO include distal patent airway visualized on CT scan and during bronchoscopy. Odds of success are higher in non-smokers, and with decreased time from radiographic finding of CAO to intervention.Item Open Access Surfactant protein A is defective in abrogating inflammation in asthma.(American journal of physiology. Lung cellular and molecular physiology, 2011-10) Wang, Ying; Voelker, Dennis R; Lugogo, Njira L; Wang, Guirong; Floros, Joanna; Ingram, Jennifer L; Chu, Hong Wei; Church, Tony D; Kandasamy, Pitchaimani; Fertel, Daniel; Wright, Jo Rae; Kraft, MonicaSurfactant protein A (SP-A) regulates a variety of immune cell functions. We determined the ability of SP-A derived from normal and asthmatic subjects to modulate the inflammatory response elicited by Mycoplasma pneumoniae, a pathogen known to exacerbate asthma. Fourteen asthmatic and 10 normal control subjects underwent bronchoscopy with airway brushing and bronchoalveolar lavage (BAL). Total SP-A was extracted from BAL. The ratio of SP-A1 to total SP-A (SP-A1/SP-A) and the binding of total SP-A to M. pneumoniae membranes were determined. Airway epithelial cells from subjects were exposed to either normal or asthmatic SP-A before exposure to M. pneumoniae. IL-8 protein and MUC5AC mRNA were measured. Total BAL SP-A concentration did not differ between groups, but the percentage SP-A1 was significantly increased in BAL of asthmatic compared with normal subjects. SP-A1/SP-A significantly correlated with maximum binding of total SP-A to M. pneumoniae, but only in asthma. SP-A derived from asthmatic subjects did not significantly attenuate IL-8 and MUC5AC in the setting of M. pneumoniae infection compared with SP-A derived from normal subjects. We conclude that SP-A derived from asthmatic subjects does not abrogate inflammation effectively, and this dysfunction may be modulated by SP-A1/SP-A.Item Open Access Using Interleukin 6 and 8 in Blood and Bronchoalveolar Lavage Fluid to Predict Survival in Hematological Malignancy Patients With Suspected Pulmonary Mold Infection.(Frontiers in immunology, 2019-01) Rawlings, Stephen A; Heldt, Sven; Prattes, Juergen; Eigl, Susanne; Jenks, Jeffrey D; Flick, Holger; Rabensteiner, Jasmin; Prüller, Florian; Wölfler, Albert; Neumeister, Peter; Strohmaier, Heimo; Krause, Robert; Hoenigl, MartinBackground: Molds and other pathogens induce elevated levels of several cytokines, including interleukin (IL)-6 and IL-8. The objective of this study was to investigate the prognostic value of IL-6 and IL-8 as well as fungal biomarkers in blood and bronchoalveolar lavage fluid (BAL) for overall survival in patients with underlying hematological malignancies and suspected mold infection. Methods: This cohort study included 106 prospectively enrolled adult cases undergoing bronchoscopy. Blood samples were collected within 24 h of BAL sampling and, in a subset of 62 patients, serial blood samples were collected up until 4 days after bronchoscopy. IL-6, IL-8, and other cytokines as well as galactomannan (GM) and β-D-glucan (BDG) were assayed in blood and BAL fluid and associations with overall mortality were assessed at the end of the study using receiver operating characteristic (ROC) curve analysis. Results: Both blood IL-8 (AUC 0.731) and blood IL-6 (AUC 0.699) as well as BAL IL-6 (AUC 0.763) and BAL IL-8 (AUC 0.700) levels at the time of bronchoscopy were predictors of 30-day all-cause mortality. Increasing blood IL-6 levels between bronchoscopy and day four after bronchoscopy were significantly associated with higher 90-day mortality, with similar findings for increasing IL-8 levels. In ROC analysis the difference of blood IL-8 levels between 4 days after bronchoscopy and the day of bronchoscopy had an AUC of 0.829 (95%CI 0.71-0.95; p < 0.001) for predicting 90-day mortality. Conclusions: Elevated levels of IL-6 and IL-8 in blood or BAL fluid at the time of bronchoscopy, and rising levels in blood 4 days following bronchoscopy were predictive of mortality in these patients with underlying hematological malignancy who underwent bronchoscopy for suspected mold infection.