Browsing by Subject "Chemotaxis"
Results Per Page
Sort Options
Item Open Access Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity.(Nat Commun, 2015-01-22) Kanayama, M; Inoue, M; Danzaki, K; Hammer, G; He, Y; Shinohara, MLImmune responses must be well restrained in a steady state to avoid excessive inflammation. However, such restraints are quickly removed to exert antimicrobial responses. Here we report a role of autophagy in an early host antifungal response by enhancing NFκB activity through A20 sequestration. Enhancement of NFκB activation is achieved by autophagic depletion of A20, an NFκB inhibitor, in F4/80(hi) macrophages in the spleen, peritoneum and kidney. We show that p62, an autophagic adaptor protein, captures A20 to sequester it in the autophagosome. This allows the macrophages to release chemokines to recruit neutrophils. Indeed, mice lacking autophagy in myeloid cells show higher susceptibility to Candida albicans infection due to impairment in neutrophil recruitment. Thus, at least in the specific aforementioned tissues, autophagy appears to break A20-dependent suppression in F4/80(hi) macrophages, which express abundant A20 and contribute to the initiation of efficient innate immune responses.Item Open Access Beta-arrestin-2 regulates the development of allergic asthma.(J Clin Invest, 2003-08) Walker, Julia KL; Fong, Alan M; Lawson, Barbara L; Savov, Jordan D; Patel, Dhavalkumar D; Schwartz, David A; Lefkowitz, Robert JAsthma is a chronic inflammatory disorder of the airways that is coordinated by Th2 cells in both human asthmatics and animal models of allergic asthma. Migration of Th2 cells to the lung is key to their inflammatory function and is regulated in large part by chemokine receptors, members of the seven-membrane-spanning receptor family. It has been reported recently that T cells lacking beta-arrestin-2, a G protein-coupled receptor regulatory protein, demonstrate impaired migration in vitro. Here we show that allergen-sensitized mice having a targeted deletion of the beta-arrestin-2 gene do not accumulate T lymphocytes in their airways, nor do they demonstrate other physiological and inflammatory features characteristic of asthma. In contrast, the airway inflammatory response to LPS, an event not coordinated by Th2 cells, is fully functional in mice lacking beta-arrestin-2. beta-arrestin-2-deficient mice demonstrate OVA-specific IgE responses, but have defective macrophage-derived chemokine-mediated CD4+ T cell migration to the lung. This report provides the first evidence that beta-arrestin-2 is required for the manifestation of allergic asthma. Because beta-arrestin-2 regulates the development of allergic inflammation at a proximal step in the inflammatory cascade, novel therapies focused on this protein may prove useful in the treatment of asthma.Item Open Access Bimodal analysis reveals a general scaling law governing nondirected and chemotactic cell motility.(Biophysical journal, 2010-07) Gruver, J Scott; Potdar, Alka A; Jeon, Junhwan; Sai, Jiqing; Anderson, Bridget; Webb, Donna; Richmond, Ann; Quaranta, Vito; Cummings, Peter T; Chung, Chang YCell motility is a fundamental process with relevance to embryonic development, immune response, and metastasis. Cells move either spontaneously, in a nondirected fashion, or in response to chemotactic signals, in a directed fashion. Even though they are often studied separately, both forms of motility share many complex processes at the molecular and subcellular scale, e.g., orchestrated cytoskeletal rearrangements and polarization. In addition, at the cellular level both types of motility include persistent runs interspersed with reorientation pauses. Because there is a great range of variability in motility among different cell types, a key challenge in the field is to integrate these multiscale processes into a coherent framework. We analyzed the motility of Dictyostelium cells with bimodal analysis, a method that compares time spent in persistent versus reorientation mode. Unexpectedly, we found that reorientation time is coupled with persistent time in an inverse correlation and, surprisingly, the inverse correlation holds for both nondirected and chemotactic motility, so that the full range of Dictyostelium motility can be described by a single scaling relationship. Additionally, we found an identical scaling relationship for three human cell lines, indicating that the coupling of reorientation and persistence holds across species and making it possible to describe the complexity of cell motility in a surprisingly general and simple manner. With this new perspective, we analyzed the motility of Dictyostelium mutants, and found four in which the coupling between two modes was altered. Our results point to a fundamental underlying principle, described by a simple scaling law, unifying mechanisms of eukaryotic cell motility at several scales.Item Open Access Chemotactic movement of a polarity site enables yeast cells to find their mates.(Proceedings of the National Academy of Sciences of the United States of America, 2021-06) Ghose, Debraj; Jacobs, Katherine; Ramirez, Samuel; Elston, Timothy; Lew, DanielHow small eukaryotic cells can interpret dynamic, noisy, and spatially complex chemical gradients to orient growth or movement is poorly understood. We address this question using Saccharomyces cerevisiae, where cells orient polarity up pheromone gradients during mating. Initial orientation is often incorrect, but polarity sites then move around the cortex in a search for partners. We find that this movement is biased by local pheromone gradients across the polarity site: that is, movement of the polarity site is chemotactic. A bottom-up computational model recapitulates this biased movement. The model reveals how even though pheromone-bound receptors do not mimic the shape of external pheromone gradients, nonlinear and stochastic effects combine to generate effective gradient tracking. This mechanism for gradient tracking may be applicable to any cell that searches for a target in a complex chemical landscape.Item Open Access Direct In Vivo Manipulation and Imaging of Calcium Transients in Neutrophils Identify a Critical Role for Leading-Edge Calcium Flux.(Cell Rep, 2015-12-15) Tobin, DMCalcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.Item Open Access Experimentally informed bottom-up model of yeast polarity suggests how single cells respond to chemical gradients(2021) Ghose, DebrajHow do single cells—like neutrophils, amoebae, neurons, yeast, etc.—grow or move in a directed fashion in response to spatial chemical gradients? To address this question, we used the mating response in the budding yeast, Saccharomyces cerevisiae, as a biological model. To mate, pairs of yeast cells orient their cell fronts toward each other and fuse. Each cell relies on a pheromone gradient established by its partner to orient correctly. The ability for cells to resolve gradients is striking, because each cell is only ~5 μm wide and is thought to be operating in complex and noisy environments. Interestingly, mating pairs of cells often start out not facing each other. When this happens, the front of each cell—defined by a patch of cortical polarity proteins—undergoes a series of erratic and random movements along the cell cortex till it ‘finds’ the mating partner’s patch. We sought to understand how polarity patches in misaligned cells find each other. To this end, we first characterized patch movement in cells by the distribution of their step-lengths and turning angles and analyzed a bottom-up model of the polarity patch’s dynamics. The final version of our model combines 11 reaction-diffusion equations representing polarity protein dynamics with a stochastic module representing vesicle trafficking on a plane with periodic boundary conditions. We found that the model could not quantitatively reproduce step-length and turning angle distributions, which suggested that some mechanisms driving patch movement may not be present in the model. Incorpo-rating biologically inspired features into the model—such as focused vesicle delivery, sudden fluctuations in vesicle delivery rates, and the presence of polarity inhibitors on vesicles—allowed us to quantitatively match the in vivo polarity patch’s behavior. We then introduced a pathway, which connects pheromone sensing to polarity, to see how the model behaved when exposed to pheromone gradients. Concurrently, we analyzed the behavior of fluores-cently labeled polarity patches in mating pairs of cells. We discovered that the ~1 μm wide patch could (remarkably) sense and bias its movement up pheromone gradients, a result corroborated by our model. Further analysis of the model revealed that while the polarity patch tends to bias the location of a cluster of pheromone-sensing-receptors, the receptors can transform an external pheromone distribution into a peaked non-linear “polarity-activation” profile that “pulls” the patch. Stochastic perturbations cause the patch to “ping-pong” around the activation-profile. In a gradient of pheromone, this ping-ponging be-comes biased, leading to net patch movement up the gradient. We speculate that such a mechanism could be used by single cells with mobile fronts to track chemical gradients.
Item Open Access Mechanisms of Chemotropism in Fungi: Saccharomyces cerevisiae as a Model(2021) Clark-Cotton, Manuella RossetteBudding yeast decode pheromone gradients to locate mating partners, providing a model of chemotropism in fungi. How yeast polarize toward a single partner in crowded environments is unclear. Initially, cells often polarize in unproductive directions, but then they relocate the polarity site until two partners’ polarity sites align, whereupon the cells “commit” to each other by stabilizing polarity to promote fusion. Using live-cell fluorescence microscopy, computational modeling, and quantitative autocorrelation analyses, I address the role of the early mobile polarity sites, finding that commitment by either partner failed if just one partner was defective in generating, orienting, or stabilizing its mobile polarity sites. Mobile polarity sites were enriched for pheromone receptors and G proteins, suggesting that such sites engage in an exploratory search of the local pheromone landscape, stabilizing only when they detect elevated pheromone levels. Mobile polarity sites were also enriched for pheromone secretion factors, and simulations suggest that only focal secretion at polarity sites would produce high pheromone concentrations at the partner’s polarity site, triggering commitment.
Item Open Access Mechanisms of Gradient Tracking During Yeast Mating(2012) Johnson, Jayme MMany cells are remarkably proficient at tracking even shallow chemical gradients, despite tiny differences in receptor occupancy across the cell. Stochastic receptor-ligand interactions introduce considerable noise in instantaneous receptor occupancy, so it is thought that spatial information must be integrated over time to allow noise filtering. The mechanism of temporal integration is unknown. We used the mating response of the budding yeast, Saccharomyces cerevisiae, as a model to study eukaryotic gradient tracking.
During mating, yeast cells polarize and grow up a gradient of pheromone to find and fuse with opposite-sex partners. Exposure to pheromone causes polarity regulators to cluster into a tight "patch" at the cortex, directing growth toward that site. Timelapse microscopy of fluorescently-labeled polarity proteins revealed that the patch wandered around the cortex during gradient tracking. Mathematical modeling and genetic analysis suggested that fusion of vesicles near the polarization site could perturb the polarity patch and promote wandering. Wandering is decreased due to global effects from pheromone signaling as well as interactions between receptor-activated Gβ and the exchange factor for the polarity regulator Cdc42. We found that artificially stabilizing patch wandering impaired accurate gradient tracking.
We suggest that ongoing polarized vesicle traffic causes patch wandering, which is locally reduced by pheromone-bound receptors. Thus, over time, spatial information from the pheromone gradient biases the random wandering of the polarity patch so that growth occurs predominantly up-gradient. Such temporal integration may enable sorting the low signal from stochastic noise when tracking shallow gradients.
Item Open Access Regulation of Integrin α6 Recycling by Calcium-independent Phospholipase A2 (iPLA2) to Promote Microglia Chemotaxis on Laminin.(The Journal of biological chemistry, 2016-11) Lee, Sang-Hyun; Sud, Neetu; Lee, Narae; Subramaniyam, Selvaraj; Chung, Chang YMicroglia are the immune effector cells that are activated in response to pathological changes in the central nervous system. Microglial activation is accompanied by the alteration of integrin expression on the microglia surface. However, changes of integrin expression upon chemoattractant (ADP) stimulation still remain unknown. In this study, we investigated whether ADP induces the alteration of integrin species on the cell surface, leading to changes in chemotactic ability on different extracellular matrix proteins. Flow cytometry scans and on-cell Western assays showed that ADP stimulation induced a significant increase of α6 integrin-GFP, but not α5, on the surface of microglia cells. Microglia also showed a greater motility increase on laminin than fibronectin after ADP stimulation. Time lapse microscopy and integrin endocytosis assay revealed the essential role of calcium-independent phospholipase A2 activity for the recycling of α6 integrin-GFP from the endosomal recycling complex to the plasma membrane. Lack of calcium-independent phospholipase A2 activity caused a reduced rate of focal adhesion formation on laminin at the leading edge. Our results suggest that the alteration of integrin-mediated adhesion may regulate the extent of microglial infiltration into the site of damage by controlling their chemotactic ability.Item Open Access Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis.(Traffic (Copenhagen, Denmark), 2011-07) Lee, Sang-Hyun; Schneider, Claus; Higdon, Ashlee N; Darley-Usmar, Victor M; Chung, Chang YMicroglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.Item Open Access Signaling Pathways Controlling Microglia Chemotaxis.(Molecules and cells, 2017-03-17) Fan, Yang; Xie, Lirui; Chung, Chang YMicroglia are the primary resident immune cells of the central nervous system (CNS). They are the first line of defense of the brain's innate immune response against infection, injury, and diseases. Microglia respond to extracellular signals and engulf unwanted neuronal debris by phagocytosis, thereby maintaining normal cellular homeostasis in the CNS. Pathological stimuli such as neuronal injury induce transformation and activation of resting microglia with ramified morphology into a motile amoeboid form and activated microglia chemotax toward lesion site. This review outlines the current research on microglial activation and chemotaxis.Item Open Access Tissue engraftment of hypoxic-preconditioned adipose-derived stem cells improves flap viability.(Wound Repair Regen, 2012-11) Hollenbeck, Scott T; Senghaas, Annika; Komatsu, Issei; Zhang, Ying; Erdmann, Detlev; Klitzman, BruceAdipose-derived stem cells (ASCs) have the ability to release multiple growth factors in response to hypoxia. In this study, we investigated the potential of ASCs to prevent tissue ischemia. We found conditioned media from hypoxic ASCs had increased levels of vascular endothelial growth factor (VEGF) and enhanced endothelial cell tubule formation. To investigate the effect of injecting rat ASCs into ischemic flaps, 21 Lewis rats were divided into three groups: control, normal oxygen ASCs (10(6) cells), and hypoxic preconditioned ASCs (10(6) cells). At the time of flap elevation, the distal third of the flap was injected with the treatment group. At 7 days post flap elevation, flap viability was significantly improved with injection of hypoxic preconditioned ASCs. Cluster of differentiation-31-positive cells were more abundant along the margins of flaps injected with ASCs. Fluorescent labeled ASCs localized aside blood vessels or throughout the tissue, dependent on oxygen preconditioning status. Next, we evaluated the effect of hypoxic preconditioning on ASC migration and chemotaxis. Hypoxia did not affect ASC migration on scratch assay or chemotaxis to collagen and laminin. Thus, hypoxic preconditioning of injected ASCs improves flap viability likely through the effects of VEGF release. These effects are modest and represent the limitations of cellular and growth factor-induced angiogenesis in the acute setting of ischemia.Item Open Access Transport in Biology, from Theory to Application(2022) Gong, YishuThis dissertation focuses on applications of partial differential equations with an emphasis on chemotaxis. Chemotaxis is a response of motile cells or organisms in which the direction of movement is affected by the gradient of a diffusible substance. In multicellular organisms, chemotaxis is critical to development as well as normal function. We also include a specific application that utilizes differential equations and stochastic simulation to model placental transmission of Cytomegalovirus (CMV) with experimental data.Our methods include regularity estimates, maximal and comparison principles, probabilistic techniques, and stochastic processes. This work resulted in several conclusions: We prove quantitatively chemotaxis enhances reaction in 1D setting: the upper bound for reaction time with chemotaxis is smaller than the lower bound for reaction time without chemotaxis.
We have also analyzed a random searcher in shear flow and chemotaxis; on the rigorous level, we are able to establish that the very large shear rates are a dimension reduction mechanism: the expected search time converges to the one of the corresponding one-dimensional problem. Numerically, we see fast decrease of the expected hitting time for shear and chemotactic coupling; we discover there is an optimal shear rate range where the searching time is minimal.
We also explore a model aiming to describe the origin of chemotactic ability of cells, in particular proving global regularity.
We present an end-to-end model of placental CMV transmission that allow us to study different type of infections, the timing of inoculation, the effect of immune suppression on the risk of placental transmission, and the effect of treatment.
Item Open Access β-arrestin 2-dependent activation of ERK1/2 is required for ADP-induced paxillin phosphorylation at Ser(83) and microglia chemotaxis.(Glia, 2012-09) Lee, Sang-Hyun; Hollingsworth, Ryan; Kwon, Hyeok-Yil; Lee, Narae; Chung, Chang YMicroglia play crucial roles in increased inflammation in the central nervous system upon brain injuries and diseases. Extracellular ADP has been reported to induce microglia chemotaxis and membrane ruffle formation through P2Y(12) receptor. In this study, we examined the role of ERK1/2 activation in ADP-induced microglia chemotaxis. ADP stimulation increases the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and paxillin phosphorylation at Tyr(31) and Ser(83) . Inhibition of ERK1/2 significantly inhibited paxillin phosphorylation at Ser(83) and the retraction of membrane ruffles, causing inefficient chemotaxis. Close examination of dynamics of focal adhesion (FA) formation with green fluorescent protein-paxillin revealed that the disassembly of FAs in U0126-treated cells was significantly impaired. Depletion of β-Arrestin 2 (β-Arr2) with short hairpin RNA markedly reduced the phosphorylation of ERK1/2 and Pax/Ser(83) , indicating that β-Arr2 is required for ERK1/2 activation upon ADP stimulation. A large fraction of phosphorylated ERK1/2 and β-Arr2 were translocated and co-localized at focal contacts in the newly forming lamellipodia. Examination of kinetics and rate constant of paxillin formation and disassembly revealed that the phosphorylation of paxillin at Tyr(31) by c-Src appears to be involved in adhesion formation upon ADP stimulation while Ser(83) required for adhesion disassembly.