Browsing by Subject "Immunohistochemistry"
Now showing 1 - 20 of 41
Results Per Page
Sort Options
Item Open Access A recessive variant of XRCC4 predisposes to non- BRCA1/2 breast cancer in chinese women and impairs the DNA damage response via dysregulated nuclear localization.(Oncotarget, 2014-12) He, Min; Hu, Xin; Chen, Li; Cao, A-Yong; Yu, Ke-Da; Shi, Ting-Yan; Kuang, Xia-Ying; Shi, Wen-Biao; Ling, Hong; Li, Shan; Qiao, Feng; Yao, Ling; Wei, Qingyi; Di, Gen-Hong; Shao, Zhi-MingXRCC4 plays a crucial role in the non-homologous end joining pathway that maintains genome stability. In this two-stage case-control study with 1,764 non-BRCA1/2 breast cancer patients and 1,623 cancer-free controls, we investigated the contribution of genetic variants of XRCC4 to breast cancer susceptibility in Chinese women. We identified a recessive missense variant, rs3734091 (c.739G>T, p.Ala247Ser), of XRCC4 that was significantly associated with an increased risk of breast cancer (odds ratio [OR] = 3.92, P = 0.007), particularly with the risk of developing triple-negative breast cancer (OR = 18.65, P < 0.0001). This p.Ala247Ser variant disturbed the nuclear localization of XRCC4 in cells homozygous for the rs3734091-T allele but not in heterozygous cells at both the cellular and tissue levels. In heterozygous cells, wild-type XRCC4 facilitated the nuclear localization of the XRCC4A247S mutant, thus compensating for the impaired localization of XRCC4A247S. This provided a biological mechanism by which rs3734091 conferred an increased susceptibility to non-BRCA1/2 breast cancer exclusively under a recessive model. Further functional analyses revealed that p.Ala247Ser impaired the DNA damage repair capacity and ultimately perturbed genomic stability. Taken together, our findings document the role of XRCC4 in non-BRCA1/2 breast cancer predisposition and reveal its underlying biological mechanism of action.Item Open Access Airway fibroblasts in asthma manifest an invasive phenotype.(American journal of respiratory and critical care medicine, 2011-06) Ingram, Jennifer L; Huggins, Molly J; Church, Tony D; Li, Yuejuan; Francisco, Dave C; Degan, Simone; Firszt, Rafael; Beaver, Denise M; Lugogo, Njira L; Wang, Ying; Sunday, Mary E; Noble, Paul W; Kraft, MonicaRationale
Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.Objectives
We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.Methods
Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.Measurements and main results
IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.Conclusions
IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.Item Open Access Bacteria localization and chorion thinning among preterm premature rupture of membranes.(PLoS One, 2014) Murtha, AP; Fortner, KB; Grotegut, CA; Ransom, CE; Bentley, RC; Feng, L; Lan, L; Heine, RP; Seed, PCOBJECTIVE: Bacterial colonization of the fetal membranes and its role in pathogenesis of membrane rupture is poorly understood. Prior retrospective work revealed chorion layer thinning in preterm premature rupture of membranes (PPROM) subjects. Our objective was to prospectively examine fetal membrane chorion thinning and to correlate to bacterial presence in PPROM, preterm, and term subjects. STUDY DESIGN: Paired membrane samples (membrane rupture and membrane distant) were prospectively collected from: PPROM = 14, preterm labor (PTL = 8), preterm no labor (PTNL = 8), term labor (TL = 10), and term no labor (TNL = 8), subjects. Sections were probed with cytokeratin to identify fetal trophoblast layer of the chorion using immunohistochemistry. Fluorescence in situ hybridization was performed using broad range 16 s ribosomal RNA probe. Images were evaluated, chorion and choriodecidua were measured, and bacterial fluorescence scored. Chorion thinning and bacterial presence were compared among and between groups using Student's t-test, linear mixed effect model, and Poisson regression model (SAS Cary, NC). RESULTS: In all groups, the fetal chorion cellular layer was thinner at rupture compared to distant site (147.2 vs. 253.7 µm, p<0.0001). Further, chorion thinning was greatest among PPROM subjects compared to all other groups combined, regardless of site sampled [PPROM(114.9) vs. PTL(246.0) vs. PTNL(200.8) vs. TL(217.9) vs. TNL(246.5)]. Bacteria counts were highest among PPROM subjects compared to all other groups regardless of site sampled or histologic infection [PPROM(31) vs. PTL(9) vs. PTNL(7) vs. TL(7) vs. TNL(6)]. Among all subjects at both sites, bacterial counts were inversely correlated with chorion thinning, even excluding histologic chorioamnionitis (p<0.0001 and p = 0.05). CONCLUSIONS: Fetal chorion was uniformly thinner at rupture site compared to distant sites. In PPROM fetal chorion, we demonstrated pronounced global thinning. Although cause or consequence is uncertain, bacterial presence is greatest and inversely correlated with chorion thinning among PPROM subjects.Item Open Access BMP signaling in the development of the mouse esophagus and forestomach.(Development, 2010-12) Rodriguez, Pavel; Da Silva, Susana; Oxburgh, Leif; Wang, Fan; Hogan, Brigid LM; Que, JianwenThe stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26(CAG-loxpstoploxp-caBmprIa)) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1a(flox/flox) embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach.Item Open Access Calcineurin activation causes retinal ganglion cell degeneration.(Mol Vis, 2012) Qu, Juan; Matsouaka, Roland; Betensky, Rebecca A; Hyman, Bradley T; Grosskreutz, Cynthia LPURPOSE: We previously reported that calcineurin, a Ca(2+)/calmodulin-dependent serine/threonine phosphatase, is activated and proposed that it participates in retinal ganglion cell (RGC) apoptosis in two rodent ocular hypertension models. In this study, we tested whether calcineurin activation by itself, even in the absence of ocular hypertension, is sufficient to cause RGC degeneration. METHODS: We compared RGC and optic nerve morphology after adeno-associated virus serotype 2 (AAV2)-mediated transduction of RGCs with constitutively active calcineurin (CaNCA) or unactivated, wild-type calcineurin (CaNwt). Retinas and optic nerves were harvested 7-16 weeks after injection of the AAV into mouse vitreous. In flatmounted retinas, the transduced RGCs were identified with immunohistochemistry. The morphology of the RGCs was revealed by immunostaining for neurofilament SMI32 or by using GFP-M transgenic mice. A modified Sholl analysis was applied to analyze the RGC dendritic morphology. Optic nerve damage was assessed with optic nerve grading according to the Morrison standard. RESULTS: CaNwt and CaNCA were highly expressed in the injected eyes. Compared to the CaNwt-expressing RGCs, the CaNCA-expressing RGCs had smaller somas, smaller dendritic field areas, shorter total dendrite lengths, and simpler dendritic branching patterns. At 16 weeks, the CaNCA-expressing eyes had greater optic nerve damage than the CaNwt-expressing eyes. CONCLUSIONS: Calcineurin activation is sufficient to cause RGC dendritic degeneration and optic nerve damage. These data support the hypothesis that calcineurin activation is an important mediator of RGC degeneration, and are consistent with the hypothesis that calcineurin activation may contribute to RGC neurodegeneration in glaucoma.Item Open Access Chondrogenesis of adult stem cells from adipose tissue and bone marrow: induction by growth factors and cartilage-derived matrix.(Tissue Eng Part A, 2010-02) Diekman, Brian O; Rowland, Christopher R; Lennon, Donald P; Caplan, Arnold I; Guilak, FarshidOBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.Item Open Access Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance.(Nature medicine, 2017-05) Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, GeorgeThe progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4+ and CD8+ T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.Item Open Access Detection of amino-terminal extracellular domain of somatostatin receptor 2 by specific monoclonal antibodies and quantification of receptor density in medulloblastoma.(Hybridoma (Larchmt), 2009-12) Kuan, Chien-Tsun; Wikstrand, Carol J; McLendon, Roger E; Zalutsky, Michael R; Kumar, Ujendra; Bigner, Darell DSomatostatin receptor 2 (SSTR2) is expressed by most medulloblastomas (MEDs). We isolated monoclonal antibodies (MAbs) to the 12-mer (33)QTEPYYDLTSNA(44), which resides in the extracellular domain of the SSTR2 amino terminus, screened the peptide-bound MAbs by fluorescence microassay on D341 and D283 MED cells, and demonstrated homogeneous cell-surface binding, indicating that all cells expressed cell surface-detectable epitopes. Five radiolabeled MAbs were tested for immunoreactive fraction (IRF), affinity (KA) (Scatchard analysis vs. D341 MED cells), and internalization by MED cells. One IgG(3) MAb exhibited a 50-100% IRF, but low KA. Four IgG(2a) MAbs had 46-94% IRFs and modest KAs versus intact cells (0.21-1.2 x 10(8) M(-1)). Following binding of radiolabeled MAbs to D341 MED at 4 degrees C, no significant internalization was observed, which is consistent with results obtained in the absence of ligand. However, all MAbs exhibited long-term association with the cells; binding at 37 degrees C after 2 h was 65-66%, and after 24 h, 52-64%. In tests with MAbs C10 and H5, the number of cell surface receptors per cell, estimated by Scatchard and quantitative FACS analyses, was 3.9 x 10(4) for the "glial" phenotype DAOY MED cell line and 0.6-8.8 x 10(5) for four neuronal phenotype MED cell lines. Our results indicate a potential immunotherapeutic application for these MAbs.Item Open Access Detection of single mRNAs in individual cells of the auditory system.(Hearing research, 2018-09) Salehi, Pezhman; Nelson, Charlie N; Chen, Yingying; Lei, Debin; Crish, Samuel D; Nelson, Jovitha; Zuo, Hongyan; Bao, JianxinGene expression analysis is essential for understanding the rich repertoire of cellular functions. With the development of sensitive molecular tools such as single-cell RNA sequencing, extensive gene expression data can be obtained and analyzed from various tissues. Single-molecule fluorescence in situ hybridization (smFISH) has emerged as a powerful complementary tool for single-cell genomics studies because of its ability to map and quantify the spatial distributions of single mRNAs at the subcellular level in their native tissue. Here, we present a detailed method to study the copy numbers and spatial localizations of single mRNAs in the cochlea and inferior colliculus. First, we demonstrate that smFISH can be performed successfully in adult cochlear tissue after decalcification. Second, we show that the smFISH signals can be detected with high specificity. Third, we adapt an automated transcript analysis pipeline to quantify and identify single mRNAs in a cell-specific manner. Lastly, we show that our method can be used to study possible correlations between transcriptional and translational activities of single genes. Thus, we have developed a detailed smFISH protocol that can be used to study the expression of single mRNAs in specific cell types of the peripheral and central auditory systems.Item Open Access Developmental origins of precocial forelimbs in marsupial neonates.(Development, 2010-12) Keyte, Anna L; Smith, Kathleen KMarsupial mammals are born in an embryonic state, as compared with their eutherian counterparts, yet certain features are accelerated. The most conspicuous of these features are the precocial forelimbs, which the newborns use to climb unaided from the opening of the birth canal to the teat. The developmental mechanisms that produce this acceleration are unknown. Here we show that heterochronic and heterotopic changes early in limb development contribute to forelimb acceleration. Using Tbx5 and Tbx4 as fore- and hindlimb field markers, respectively, we have found that, compared with mouse, both limb fields arise notably early during opossum development. Patterning of the forelimb buds is also accelerated, as Shh expression appears early relative to the outgrowth of the bud itself. In addition, the forelimb fields and forelimb myocyte allocation are increased in size and number, respectively, and migration of the spinal nerves into the forelimb bud has been modified. This shift in the extent of the forelimb field is accompanied by shifts in Hox gene expression along the anterior-posterior axis. Furthermore, we found that both fore- and hindlimb fields arise gradually during gastrulation and extension of the embryonic axis, in contrast to the appearance of the limb fields in their entirety in all other known cases. Our results show a surprising evolutionary flexibility in the early limb development program of amniotes and rule out the induction of the limb fields by mature structures such as the somites or mesonephros.Item Open Access Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS.(Environ Health Perspect, 2009-03) Li, Jinju; Ghio, Andrew J; Cho, Seung-Hyun; Brinckerhoff, Constance E; Simon, Sidney A; Liedtke, WolfgangBACKGROUND: Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE: We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS: Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION: Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2.Item Open Access Dysferlin, annexin A1, and mitsugumin 53 are upregulated in muscular dystrophy and localize to longitudinal tubules of the T-system with stretch.(Journal of neuropathology and experimental neurology, 2011-04) Waddell, LB; Lemckert, FA; Zheng, XF; Tran, J; Evesson, FJ; Hawkes, JM; Lek, A; Street, NE; Lin, P; Clarke, NF; Landstrom, AP; Ackerman, MJ; Weisleder, N; Ma, J; North, KN; Cooper, STMutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.Item Open Access Enhanced de novo alloantibody and antibody-mediated injury in rhesus macaques.(Am J Transplant, 2012-09) Page, EK; Page, AJ; Kwun, J; Gibby, AC; Leopardi, F; Jenkins, JB; Strobert, EA; Song, M; Hennigar, RA; Iwakoshi, N; Knechtle, SJChronic allograft rejection is a major impediment to long-term transplant success. Humoral immune responses to alloantigens are a growing clinical problem in transplantation, with mounting evidence associating alloantibodies with the development of chronic rejection. Nearly a third of transplant recipients develop de novo antibodies, for which no established therapies are effective at preventing or eliminating, highlighting the need for a nonhuman primate model of antibody-mediated rejection. In this report, we demonstrate that depletion using anti-CD3 immunotoxin (IT) combined with maintenance immunosuppression that included tacrolimus with or without alefacept reliably prolonged renal allograft survival in rhesus monkeys. In these animals, a preferential skewing toward CD4 repopulation and proliferation was observed, particularly with the addition of alefacept. Furthermore, alefacept-treated animals demonstrated increased alloantibody production (100%) and morphologic features of antibody-mediated injury. In vitro, alefacept was found to enhance CD4 effector memory T cell proliferation. In conclusion, alefacept administration after depletion and with tacrolimus promotes a CD4+memory T cell and alloantibody response, with morphologic changes reflecting antibody-mediated allograft injury. Early and consistent de novo alloantibody production with associated histological changes makes this nonhuman primate model an attractive candidate for evaluating targeted therapeutics.Item Restricted Evidence that SOX2 overexpression is oncogenic in the lung.(PLoS One, 2010-06-10) Lu, Y; Futtner, C; Rock, JR; Xu, X; Whitworth, W; Hogan, BL; Onaitis, MWBACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer.Item Open Access Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas.(Oncotarget, 2012-07) Jiao, Yuchen; Killela, Patrick J; Reitman, Zachary J; Rasheed, Ahmed B; Heaphy, Christopher M; de Wilde, Roeland F; Rodriguez, Fausto J; Rosemberg, Sergio; Oba-Shinjo, Sueli Mieko; Nagahashi Marie, Suely Kazue; Bettegowda, Chetan; Agrawal, Nishant; Lipp, Eric; Pirozzi, Christopher; Lopez, Giselle; He, Yiping; Friedman, Henry; Friedman, Allan H; Riggins, Gregory J; Holdhoff, Matthias; Burger, Peter; McLendon, Roger; Bigner, Darell D; Vogelstein, Bert; Meeker, Alan K; Kinzler, Kenneth W; Papadopoulos, Nickolas; Diaz, Luis A; Yan, HaiMutations in the critical chromatin modifier ATRX and mutations in CIC and FUBP1, which are potent regulators of cell growth, have been discovered in specific subtypes of gliomas, the most common type of primary malignant brain tumors. However, the frequency of these mutations in many subtypes of gliomas, and their association with clinical features of the patients, is poorly understood. Here we analyzed these loci in 363 brain tumors. ATRX is frequently mutated in grade II-III astrocytomas (71%), oligoastrocytomas (68%), and secondary glioblastomas (57%), and ATRX mutations are associated with IDH1 mutations and with an alternative lengthening of telomeres phenotype. CIC and FUBP1 mutations occurred frequently in oligodendrogliomas (46% and 24%, respectively) but rarely in astrocytomas or oligoastrocytomas ( more than 10%). This analysis allowed us to define two highly recurrent genetic signatures in gliomas: IDH1/ATRX (I-A) and IDH1/CIC/FUBP1 (I-CF). Patients with I-CF gliomas had a significantly longer median overall survival (96 months) than patients with I-A gliomas (51 months) and patients with gliomas that did not harbor either signature (13 months). The genetic signatures distinguished clinically distinct groups of oligoastrocytoma patients, which usually present a diagnostic challenge, and were associated with differences in clinical outcome even among individual tumor types. In addition to providing new clues about the genetic alterations underlying gliomas, the results have immediate clinical implications, providing a tripartite genetic signature that can serve as a useful adjunct to conventional glioma classification that may aid in prognosis, treatment selection, and therapeutic trial design.Item Open Access Genome-wide expression profiles of subchondral bone in osteoarthritis.(Arthritis Res Ther, 2013) Chou, Ching-Heng; Wu, Chia-Chun; Song, I-Wen; Chuang, Hui-Ping; Lu, Liang-Suei; Chang, Jen-Huei; Kuo, San-Yuan; Lee, Chian-Her; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Kraus, Virginia Byers; Lee, Ming Ta MichaelINTRODUCTION: The aim of this study was to evaluate, for the first time, the differences in gene expression profiles of normal and osteoarthritic (OA) subchondral bone in human subjects. METHODS: Following histological assessment of the integrity of overlying cartilage and the severity of bone abnormality by micro-computed tomography, we isolated total RNA from regions of interest from human OA (n = 20) and non-OA (n = 5) knee lateral tibial (LT) and medial tibial (MT) plateaus. A whole-genome profiling study was performed on an Agilent microarray platform and analyzed using Agilent GeneSpring GX11.5. Confirmatory quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis was performed on samples from 9 OA individuals to confirm differential expression of 85 genes identified by microarray. Ingenuity Pathway Analysis (IPA) was used to investigate canonical pathways and immunohistochemical staining was performed to validate protein expression levels in samples. RESULTS: A total of 972 differentially expressed genes were identified (fold change ≥ ± 2, P ≤0.05) between LT (minimal degeneration) and MT (significant degeneration) regions from OA samples; these data implicated 279 canonical pathways in IPA. The qRT-PCR data strongly confirmed the accuracy of microarray results (R2 = 0.58, P <0.0001). Novel pathways were identified in this study including Periostin (POSTN) and Leptin (LEP), which are implicated in bone remodeling by osteoblasts. CONCLUSIONS: To the best of our knowledge, this study represents the most comprehensive direct assessment to date of gene expression profiling in OA subchondral bone. This study provides insights that could contribute to the development of new biomarkers and therapeutic strategies for OA.Item Open Access In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. IV. Affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance.(J Exp Med, 1995-12-01) Han, S; Zheng, B; Dal Porto, J; Kelsoe, GGerminal centers (GCs) are the sites of antigen-driven V(D)J gene hypermutation and selection necessary for the generation of high affinity memory B lymphocytes. Despite the antigen dependence of this reaction, injection of soluble antigen during an established primary immune response induces massive apoptotic death in GC B cells, but not in clonally related populations of nonfollicular B lymphoblasts and plasmacytes. Cell death in GCs occurs predominantly among light zone centrocytes, is antigen specific, and peaks within 4-8 h after injection. Antigen-induced programmed death does not involve cellular interactions mediated by CD40 ligand (CD40L) or Fas; disruption of GCs by antibody specific for CD40L was not driven by apoptosis and C57BL/6.lpr mice, though unable to express the Fas death trigger, remained fully susceptible to soluble antigen. Single injections of antigen did not significantly decrease GC numbers or average size, but repeated injections during an 18-h period resulted in fewer and substantially smaller GCs. As cell loss appeared most extensive in the light zone, decreased GC cellularity after prolonged exposure to soluble antigen implies that the Ig- centroblasts of the dark zone may require replenishment from light zone cells that have survived antigenic selection. GC cell death is avidity-dependent; oligovalent antigen induced relatively little apoptosis and GC B cells that survived long exposures to multivalent antigen expressed atypical VDJ rearrangements unlikely to encode high affinity antibody. Antigen-induced apoptotic death in GCs may represent a mechanism for the peripheral deletion of autoreactive B cell mutants much as the combinatorial repertoire of immature B lymphocytes is censored in the bone marrow.Item Open Access Inhibition of adaptive immune responses leads to a fatal clinical outcome in SIV-infected pigtailed macaques but not vervet African green monkeys.(PLoS Pathog, 2009-12) Schmitz, Jörn E; Zahn, Roland C; Brown, Charles R; Rett, Melisa D; Li, Ming; Tang, Haili; Pryputniewicz, Sarah; Byrum, Russell A; Kaur, Amitinder; Montefiori, David C; Allan, Jonathan S; Goldstein, Simoy; Hirsch, Vanessa MAfrican green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90) to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.Item Open Access Inhibition of Neu-induced mammary carcinogenesis in transgenic mice expressing ERΔ3, a dominant negative estrogen receptor α variant.(Hormones & cancer, 2012-12) Davis, Vicki L; Shaikh, Firdos; Gallagher, Katie M; Villegas, Michael; Rea, Sheri L; Cline, J Mark; Hughes, Claude LThe estrogen receptor α (ERα) splicing variant with an in-frame deletion of exon 3 (ERΔ3) is frequently expressed in the normal breast, but its influence on tumorigenesis has not been explored. In vitro, ERΔ3 has dominant negative activity, suggesting it may suppress estrogen stimulation in the breast. ERΔ3 may inhibit classical signaling on estrogen response element (ERE)-regulated genes as well as activate non-classical pathways at Sp1 and AP-1 sites. Transgenic mice were developed that express mouse ERΔ3 in all tissues examined, including the mammary gland. To investigate if ERΔ3 expression affects tumorigenesis, ERΔ3 mice were crossbred with MMTV-Neu mice. Mammary tumor onset was significantly delayed in ERΔ3/Neu versus MMTV-Neu females and metastatic incidence and burden was significantly reduced. Consequently, ERΔ3 expression suppressed tumor development and metastasis in this aggressive model of HER2/Neu-positive breast cancer. To determine if ER ligands with anticancer activity may augment ERΔ3 protection, the bitransgenic mice were treated with tamoxifen and soy isoflavones starting at age 2 months. Soy protein with isoflavones (181 mg/1,800 kcal) did not affect tumor development in MMTV-Neu or ERΔ3/Neu mice; however, metastatic progression was not inhibited in soy-treated ERΔ3/Neu mice, as it was in untreated ERΔ3/Neu mice. In contrast, tamoxifen (20 mg/1,800 kcal) significantly enhanced tumor prevention in ERΔ3/Neu versus MMTV-Neu mice (98% vs. 81% tumor free). The results in ERΔ3/Neu mice demonstrate that ERΔ3 influences estrogen-dependent mammary carcinogenesis and, thus, may be protective in women expressing ERΔ3 in the breast. However, exposure to different estrogens may augment or block its beneficial effects.Item Open Access Interspecies avian brain chimeras reveal that large brain size differences are influenced by cell-interdependent processes.(PLoS One, 2012) Chen, Chun-Chun; Balaban, Evan; Jarvis, Erich DLike humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telencephala from zebra finch donors (a vocal-learning species) into Japanese quail hosts (a vocal non-learning species) during the early neural tube stage (day 2 of incubation), and harvested the chimeras at later embryonic stages (between 9-12 days of incubation). The donor and host tissues fused well with each other, with known major fiber pathways connecting the zebra finch and quail parts of the brain. However, the overall sizes of chimeric finch telencephala were larger than non-transplanted finch telencephala at the same developmental stages, even though the proportional sizes of telencephalic subregions and fiber tracts were similar to normal finches. There were no significant changes in the size of chimeric quail host midbrains, even though they were innervated by the physically smaller zebra finch brain, including the smaller retinae of the finch eyes. Chimeric zebra finch telencephala had a decreased cell density relative to normal finches. However, cell nucleus size differences between each species were maintained as in normal birds. These results suggest that telencephalic size development is partially cell-interdependent, and that the mechanisms controlling the size of different brain regions may be functionally independent.
- «
- 1 (current)
- 2
- 3
- »