Detection of amino-terminal extracellular domain of somatostatin receptor 2 by specific monoclonal antibodies and quantification of receptor density in medulloblastoma.

Loading...
Thumbnail Image

Date

2009-12

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

538
views
236
downloads

Citation Stats

Attention Stats

Abstract

Somatostatin receptor 2 (SSTR2) is expressed by most medulloblastomas (MEDs). We isolated monoclonal antibodies (MAbs) to the 12-mer (33)QTEPYYDLTSNA(44), which resides in the extracellular domain of the SSTR2 amino terminus, screened the peptide-bound MAbs by fluorescence microassay on D341 and D283 MED cells, and demonstrated homogeneous cell-surface binding, indicating that all cells expressed cell surface-detectable epitopes. Five radiolabeled MAbs were tested for immunoreactive fraction (IRF), affinity (KA) (Scatchard analysis vs. D341 MED cells), and internalization by MED cells. One IgG(3) MAb exhibited a 50-100% IRF, but low KA. Four IgG(2a) MAbs had 46-94% IRFs and modest KAs versus intact cells (0.21-1.2 x 10(8) M(-1)). Following binding of radiolabeled MAbs to D341 MED at 4 degrees C, no significant internalization was observed, which is consistent with results obtained in the absence of ligand. However, all MAbs exhibited long-term association with the cells; binding at 37 degrees C after 2 h was 65-66%, and after 24 h, 52-64%. In tests with MAbs C10 and H5, the number of cell surface receptors per cell, estimated by Scatchard and quantitative FACS analyses, was 3.9 x 10(4) for the "glial" phenotype DAOY MED cell line and 0.6-8.8 x 10(5) for four neuronal phenotype MED cell lines. Our results indicate a potential immunotherapeutic application for these MAbs.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1089/hyb.2009.0049

Publication Info

Kuan, Chien-Tsun, Carol J Wikstrand, Roger E McLendon, Michael R Zalutsky, Ujendra Kumar and Darell D Bigner (2009). Detection of amino-terminal extracellular domain of somatostatin receptor 2 by specific monoclonal antibodies and quantification of receptor density in medulloblastoma. Hybridoma (Larchmt), 28(6). pp. 389–403. 10.1089/hyb.2009.0049 Retrieved from https://hdl.handle.net/10161/3241.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Chien-Tsun Kuan

Adjunct Associate Professor in the Department of Pathology

Research Interests:
Conventional therapy for malignant brain tumors is ineffective. Targeted therapy using tumor-specific antibodies (MAb) alone or MAbs armed with radionuclides or toxins is a promising alternative approach for increasing therapeutic efficacy and decreasing toxicity to normal tissue. The major factors that influence antibody-targeted therapy for cancer treatment, including glioma therapy, are specificity, affinity, tumor penetration, toxicity and immunogenicity. The effective use of radioimmunotherapy (RAIT) for the treatment of solid malignancies has been limited by inadequate tumor penetration and non-targeted myelotoxicity resulting from the presence of radioimmunoconjugates in circulation. We believe that these limitations to direct RAIT can be overcome by using smaller engineered antibody-based molecules as vehicles and by selecting therapeutic radioisotopes with physical properties that complement the pharmacokinetics and pharmacodynamics of the antibody.

Our research is focused upon exploiting engineered antibody fragments to treat brain tumors by targeting to glioma-associated, oncofetal epitopes such as tenascin, glioma variant epidermal growth factor variant III (EGFRvIII), medulloblastoma-associated developmental markers, as well as the newly identified glioma-associated antigens, GPNMB and MRP3, by serial analysis of gene expression (SAGE). Projects performed in the current years have: 1) produced and evaluated the monovalent single-chain Fv (scFv) against EGRvIII in athymic mice bearing human glioma xenografts; 2) begun the development of divalent form of scFv, including diabody and minibody, to increase the efficacy of therapeutic agents in vivo; 3) generated CH2 domain-deleted Ch81C6 vs tenascin and evaluated the pharmacokinetics in mice and canines; 4) begun an extensive analysis of GPNMB and MRP3 protein expression correlated with measurement of RNA transcript levels and degree of DNA amplification.

Unarmed antibody can be effective against both subcutaneous and intracranial tumor models. The unarmed antibody approach with Mab Y10 vs EGFRvIII is very similar to the successful use of HerceptinTM. The mechanism is most likely both a direct antiproliferative effect with the induction of apoptosis and an indirect effect through the mobilization of antibody-mediated immune effector functions, such as complement and antibody-dependent cell-mediated cytotoxicity (ADCC). We also have begun to construct human/mouse chimeric Y10 to reduce immunogenicity of the Mab reagent and possibly enhance ADCC.

Our objectives for the coming years are to continue the optimization of engineered-antibody systems for in vivo application, namely; a) development of human/mouse chimeric anti-EGFRvIII murine Y10 with the same affinity and specificity but reduced immunogenicity and enhanced ADCC for in vivo application; b) to generate a totally human scFv specific to EGFRvIII but with anti-proliferative activity via screening from human phage libraries; c) generation of monomeric and dimeric anti-GPNMB/MRP3 scFvs and construction of immunoconjugate toxins or radiolabeled to determine the efficacy of therapeutic reagents in athymic rodent in athymic rodent in vivo models of intracranial glioma.

McLendon

Roger Edwin McLendon

Professor of Pathology

Brain tumors are diagnosed in more than 20,000 Americans annually. The most malignant neoplasm, glioblastoma, is also the most common. Similarly, brain tumors constitute the most common solid neoplasm in children and include astrocytomas of the cerebellum, brain stem and cerebrum as well as medulloblastomas of the cerebellum.  My colleagues and I have endeavored to translate the bench discoveries of genetic mutations and aberrant protein expressions found in brain tumors to better understand the processes involved in the etiology, pathogenesis, and treatment of brain tumors.  Using the resources of the Preston Robert Brain Tumor Biorepository at Duke, our team, consisting of Henry Friedman, Allan Friedman, and Hai Yan and lead by Darell Bigner, have helped to identify mutations in Isocitrate Dehydrogenase (IDH1 and IDH2) as a marker of good prognosis in gliomas of adults.  This test is now offered at Duke as a clinical test.  Working with the Molecular Pathology Laboratory at Duke, we have also brought testing for TERT promoter region mutations as another major test for classifying gliomas in adults.  Our collaboration with the Toronto Sick Kids Hospital has resulted in prognostic testing for childhood medulloblastomas, primitive neuroectodermal tumors, and ependymomas at Duke.

Zalutsky

Michael Rod Zalutsky

Jonathan Spicehandler, M.D. Distinguished Professor of Neuro Oncology, in the School of Medicine

The overall objective of our laboratory is the development of novel radioactive compounds for improving the diagnosis and treatment of cancer. This work primarily involves radiohalo-genation of biomolecules via site-specific approaches, generally via demetallation reactions. Radionuclides utilized for imaging include I-123, I-124 and F-18, the later two being of particular interest because they can be used for the quantification of biochemical and physiological processes in the living human through positron emission tomography. For therapy, astatine-211 decays by the emission of alpha-particles, a type of radiation considerably more cytotoxic that the beta-particles used in conventional endoradiotherapy. The range of At-211 alpha particles is only a few cell diameters, offering the possibility of extremely focal irradiation of malignant cells while leaving neighboring cells intact. Highlights of recent work include: a)
development of reagents for protein and peptide radioiodination that decrease deiodination in vivo by up to 100-fold, b) demonstration that At-211 labeled monoclonal antibodies are effective in the treatment of a rat model of neoplastic meningitis, c) synthesis of a thymidine analogue labeled with At-211 and the demonstration that this molecule is taken up in cellular DNA with highly cytotoxicity even at levels of only one atom bound per cell and d) development of
radiohalobenzylguanidines which are specifically cytotoxic for human neuroblastoma cells.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.