Frozen Gaussian approximation for high frequency wave propagation in periodic media

Loading...
Thumbnail Image

Date

2017-04-26

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

164
views
116
downloads

Abstract

Propagation of high-frequency wave in periodic media is a challenging problem due to the existence of multiscale characterized by short wavelength, small lattice constant and large physical domain size. Conventional computational methods lead to extremely expensive costs, especially in high dimensions. In this paper, based on Bloch decomposition and asymptotic analysis in the phase space, we derive the frozen Gaussian approximation for high-frequency wave propagation in periodic media and establish its converge to the true solution. The formulation leads to efficient numerical algorithms, which are presented in a companion paper [Delgadillo, Lu and Yang, arXiv:1509.05552].

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

James B. Duke Distinguished Professor

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.