Wealth inequality: The physics basis

Abstract

© 2017 Author(s). "Inequality" is a common observation about us, as members of society. In this article, we unify physics with economics by showing that the distribution of wealth is related proportionally to the movement of all the streams of a live society. The hierarchical distribution of wealth on the earth happens naturally. Hierarchy is unavoidable, with staying power, and difficult to efface. We illustrate this with two architectures, river basins and the movement of freight. The physical flow architecture that emerges is hierarchical on the surface of the earth and in everything that flows inside the live human bodies, the movement of humans and their belongings, and the engines that drive the movement. The nonuniform distribution of wealth becomes more accentuated as the economy becomes more developed, i.e., as its flow architecture becomes more complex for the purpose of covering smaller and smaller interstices of the overall (fixed) territory. It takes a relatively modest complexity for the nonuniformity in the distribution of wealth to be evident. This theory also predicts the Lorenz-type distribution of income inequality, which was adopted empirically for a century.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1063/1.4977962

Publication Info

Bejan, A, and M R Errera (2017). Wealth inequality: The physics basis. Journal of Applied Physics, 121(12). 10.1063/1.4977962 Retrieved from https://hdl.handle.net/10161/15196.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bejan

Adrian Bejan

J.A. Jones Distinguished Professor of Mechanical Engineering

Professor Bejan was awarded the Benjamin Franklin Medal 2018 and the Humboldt Research Award 2019. His research covers engineering science and applied physics: thermodynamics, heat transfer, convection, design, and evolution in nature.

He is ranked among the top 0.01% of the most cited and impactful world scientists (and top 10 in Engineering world wide) in the 2019 citations impact database created by Stanford University’s John Ioannidis, in PLoS Biology.  He is the author of 30 books and 700 peer-referred articles. His h-index is 111 with 92,000 citations on Google Scholar. He received 18 honorary doctorates from universities in 11 countries.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.