Transient luminous events above two mesoscale convective systems: Storm structure and evolution

Loading...
Thumbnail Image

Date

2010-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

319
views
245
downloads

Abstract

Two warm-season mesoscale convective systems (MCSs) were analyzed with respect to their production of transient luminous events (TLEs), mainly sprites. The 20 June 2007 symmetric MCS produced 282 observed TLEs over a 4 h period, during which the storms intense convection weakened and its stratiform region strengthened. TLE production corresponded well to convective intensity. The convective elements of the MCS contained normal-polarity tripole charge structures with upper-level positive charge (-40°C), midlevel negative charge (-20°C), and low-level positive charge near the melting level. In contrast to previous sprite studies, the stratiform charge layer involved in TLE production by parent positive cloud-to-ground (+CG) lightning resided at upper levels. This layer was physically connected to upper-level convective positive charge via a downward sloping pathway. The average altitude discharged by TLE-parent flashes during TLE activity was 8.2 km above mean sea level (MSL; -25°C). The 9 May 2007 asymmetric MCS produced 25 observed TLEs over a 2 h period, during which the storms convection rapidly weakened before recovering later. Unlike 20 June, TLE production was approximately anticorrelated with convective intensity. The 9 May storm, which also had a normal tripole in its convection, best fit the conventional model of low-altitude positive charge playing the dominant role in sprite production; however, the average altitude discharged during the TLE phase of flashes still was higher than the melting level: 6.1 km MSL (-15°C). Based on these results, it is inferred that sprite production and sprite-parent positive charge altitude depend on MCS morphology. Copyright 2010 by the American Geophysical Union.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Cummer

Steven A. Cummer

William H. Younger Distinguished Professor of Engineering

Dr. Steven Cummer received his Ph.D. in Electrical Engineering from Stanford University in 1997 and prior to joining Duke University in 1999 he spent two years at NASA Goddard Space Flight Center as an NRC postdoctoral research associate. Awards he has received include a National Science Foundation CAREER award and a Presidential Early Career Award for Scientists and Engineers (PECASE) in 2001. His current work is in a variety of theoretical and experimental electromagnetic problems related to geophysical remote sensing and engineered electromagnetic materials.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.