Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells.

Loading...
Thumbnail Image

Date

2013-02-05

Authors

Kurokawa, Manabu
Ito, Takahiro
Yang, Chih-Sheng
Zhao, Chen
Macintyre, Andrew N
Rizzieri, David A
Rathmell, Jeffrey C
Deininger, Michael W
Reya, Tannishtha
Kornbluth, Sally

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

231
views
299
downloads

Citation Stats

Abstract

Increased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations.

Department

Description

Provenance

Subjects

Animals, Antineoplastic Agents, Apoptosis, Benzamides, Caspase 8, Caspases, Drug Resistance, Neoplasm, Enzyme Activation, Fusion Proteins, bcr-abl, Genetic Variation, Hematopoietic Stem Cells, Humans, Imatinib Mesylate, K562 Cells, Leukemia, Mice, Piperazines, Protein Engineering, Protein Kinase Inhibitors, Pyrimidines, Recombinant Proteins, Transduction, Genetic

Citation

Published Version (Please cite this version)

10.1073/pnas.1206551110

Publication Info

Kurokawa, Manabu, Takahiro Ito, Chih-Sheng Yang, Chen Zhao, Andrew N Macintyre, David A Rizzieri, Jeffrey C Rathmell, Michael W Deininger, et al. (2013). Engineering a BCR-ABL-activated caspase for the selective elimination of leukemic cells. Proc Natl Acad Sci U S A, 110(6). pp. 2300–2305. 10.1073/pnas.1206551110 Retrieved from https://hdl.handle.net/10161/8388.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Macintyre

Andrew Neil Macintyre

Associate Professor in Medicine

Andrew Macintyre, PhD, directs the Immunology Unit within the Duke Regional Biocontainment Laboratory. The Macintyre lab team designs and performs assays to quantify immune reconstitution and immune responses. The lab specializes in multiplex cytokine arrays, flow cytometry, high-throughput ELISAs, qRT-PCR, and other molecular tests. 

The assays his team develops and runs support research into biodefense and critical public health challenges. Long-running collaborative projects include the evaluation of radiation countermeasures and the development of vaccines for influenza, gonorrhea, SARS-CoV2, and other pathogens.

Kornbluth

Sally A. Kornbluth

Jo Rae Wright University Distinguished Professor Emerita

Our lab studies the regulation of complex cellular processes, including cell cycle progression and programmed cell death (apoptosis). These tightly orchestrated processes are critical for appropriate cell proliferation and cell death, and when they go awry can result in cancer and degenerative disorders. Within these larger fields, we have focused on understanding the cellular mechanisms that prevent the onset of mitosis prior to the completion of DNA replication, the processes that prevent cell division when the mitotic spindle is disrupted, the signaling pathways that prevent apoptotic cell death in cancer cells and the mechanisms that link cell metabolism to cell death and survival.

In our quest to answer these important cell biological and biochemical questions, we are varied in our use of experimental systems.   Traditionally, we have used cell-free extracts prepared from eggs of the frog Xenopus laevis which can recapitulate cell cycle events and apoptotic processes in vitro. For the study of cell cycle events, extracts are prepared which can undergo multiple rounds of DNA replication and mitosis in vitro. Progression through the cell cycle can be monitored by microscopic observation of nuclear morphology and by biochemically assaying the activity of serine/threonine kinases which control cell cycle transitions.

For the study of apoptosis, modifications in extract preparation have allowed us to produce extracts which can apoptotically fragment nuclei and can accurately reproduce the biochemical events of apoptosis, including internucleosomal DNA cleavage and activation of apoptotic proteases, the caspases.

More recently, we have focused on studying apoptosis and cell cycle progression in mammalian models, both tissue culture cells and mouse models of cancer.  In these studies, we are trying to determine the precise signaling mechanisms used by cancer cells to accelerate proliferation and evade apoptotic cell death mechanisms.   We also endeavor to subvert these mechanisms to therapeutic advantage.   We are particularly interested in links between metabolism and cell death, as high metabolic rates in cancer cells appear to suppress apoptosis to evade chemotherapy-induced cell death.

Finally, we also have several projects using the facile genetics of Drosophila melanogaster to further understand links between metabolism and cell death and also the ways in which mitochondrial dynamics are linked to apoptotic pathways.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.