Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales.

Thumbnail
View / Download
1.1 Mb
Date
2013
Authors
Johnson, Zackary I
Wheeler, Benjamin J
Blinebry, Sara K
Carlson, Christina M
Ward, Christopher S
Hunt, Dana E
Repository Usage Stats
142
views
128
downloads
Abstract
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Type
Journal article
Subject
Carbonates
Ecosystem
Environment
North Carolina
Oceans and Seas
Permalink
https://hdl.handle.net/10161/10666
Published Version (Please cite this version)
10.1371/journal.pone.0085117
Publication Info
Johnson, Zackary I; Wheeler, Benjamin J; Blinebry, Sara K; Carlson, Christina M; Ward, Christopher S; & Hunt, Dana E (2013). Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS One, 8(12). pp. e85117. 10.1371/journal.pone.0085117. Retrieved from https://hdl.handle.net/10161/10666.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Hunt

Dana E. Hunt

Associate Professor of Microbial Ecology
My research focus is on understanding the ecology of microbes through examination of their genes and lifestyles. Bacteria are the most diverse organisms on earth and play a pivotal role in planetary cycling of nutrients and energy. Yet, we have a poor understanding of the factors that drive their diversity and dynamics in the environment. The lab's emphasis is on studying bacterial interactions with the environment at the appropriate temporal and spatial scale including the effect of temperat
Johnson

Zackary Johnson

Associate Professor of Biological Oceanography and Marine Bi
Our group broadly studies the abundance, diversity and activity of marine microbes. We are biological oceanographers, marine molecular ecologists, marine microbiologists and biogeochemists.  Our research focuses on the marine cyanobacteria Prochlorococcus, the most abundant phytoplankton in the open oceans and an excellent model marine microbe, as well as the biotechnological applications
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University