Designing a million-qubit quantum computer using a resource performance simulator

Loading...
Thumbnail Image

Date

2015-12-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

563
views
350
downloads

Citation Stats

Attention Stats

Abstract

© 2015 ACM 1550-4832/2015/12-ART4615.00.The optimal design of a fault-Tolerant quantum computer involves finding an appropriate balance between the burden of large-scale integration of noisy components and the load of improving the reliability of hardware technology. This balance can be evaluated by quantitatively modeling the execution of quantum logic operations on a realistic quantum hardware containing limited computational resources. In this work, we report a complete performance simulation software tool capable of (1) searching the hardware design space by varying resource architecture and technology parameters, (2) synthesizing and scheduling a fault-Tolerant quantum algorithm within the hardware constraints, (3) quantifying the performance metrics such as the execution time and the failure probability of the algorithm, and (4) analyzing the breakdown of these metrics to highlight the performance bottlenecks and visualizing resource utilization to evaluate the adequacy of the chosen design. Using this tool, we investigate a vast design space for implementing key building blocks of Shor's algorithm to factor a 1,024-bit number with a baseline budget of 1.5 million qubits. We show that a trapped-ion quantum computer designed with twice as many qubits and one-Tenth of the baseline infidelity of the communication channel can factor a 2,048-bit integer in less than 5 months.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1145/2830570

Publication Info

Ahsan, M, R Van Meter and J Kim (2015). Designing a million-qubit quantum computer using a resource performance simulator. ACM Journal on Emerging Technologies in Computing Systems, 12(4). 10.1145/2830570 Retrieved from https://hdl.handle.net/10161/11508.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.