Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Corollary discharge circuits in the primate brain.

Thumbnail
View / Download
772.0 Kb
Date
2008-12
Authors
Crapse, Trinity B
Sommer, Marc A
Repository Usage Stats
150
views
366
downloads
Abstract
Movements are necessary to engage the world, but every movement results in sensorimotor ambiguity. Self-movements cause changes to sensory inflow as well as changes in the positions of objects relative to motor effectors (eyes and limbs). Hence the brain needs to monitor self-movements, and one way this is accomplished is by routing copies of movement commands to appropriate structures. These signals, known as corollary discharge (CD), enable compensation for sensory consequences of movement and preemptive updating of spatial representations. Such operations occur with a speed and accuracy that implies a reliance on prediction. Here we review recent CD studies and find that they arrive at a shared conclusion: CD contributes to prediction for the sake of sensorimotor harmony.
Type
Journal article
Subject
Animals
Behavior
Behavior, Animal
Brain
Electrophysiology
Humans
Nerve Net
Primates
Vocalization, Animal
Permalink
https://hdl.handle.net/10161/11735
Published Version (Please cite this version)
10.1016/j.conb.2008.09.017
Publication Info
Crapse, Trinity B; & Sommer, Marc A (2008). Corollary discharge circuits in the primate brain. Curr Opin Neurobiol, 18(6). pp. 552-557. 10.1016/j.conb.2008.09.017. Retrieved from https://hdl.handle.net/10161/11735.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Sommer

Marc A. Sommer

Associate Professor of Biomedical Engineering
We study circuits for cognition. Using a combination of neurophysiology and biomedical engineering, we focus on the interaction between brain areas during visual perception, decision-making, and motor planning. Specific projects include the role of frontal cortex in metacognition, the role of cerebellar-frontal circuits in action timing, the neural basis of "good enough" decision-making (satisficing), and the neural mechanisms of transcranial magnetic stimulation (TMS).
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University