Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zero-temperature glass transition in two dimensions

Thumbnail
View / Download
5.6 Mb
Authors
Berthier, Ludovic
Charbonneau, Patrick
Ninarello, Andrea
Ozawa, Misaki
Yaida, Sho
Repository Usage Stats
163
views
49
downloads
Abstract
The nature of the glass transition is theoretically understood in the mean-field limit of infinite spatial dimensions, but the problem remains totally open in physical dimensions. Nontrivial finite-dimensional fluctuations are hard to control analytically, and experiments fail to provide conclusive evidence regarding the nature of the glass transition. Here, we use Monte Carlo simulations that fully bypass the glassy slowdown, and access equilibrium states in two-dimensional glass-forming liquids at low enough temperatures to directly probe the transition. We find that the liquid state terminates at a thermodynamic glass transition at zero temperature, which is associated with an entropy crisis and a diverging static correlation length.
Type
Journal article
Subject
cond-mat.stat-mech
cond-mat.stat-mech
Permalink
https://hdl.handle.net/10161/17390
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Charbonneau

Patrick Charbonneau

Professor of Chemistry
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University