Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture.

Abstract

Interferon-regulated immune defenses protect mammals from pathogenically diverse obligate intracellular bacterial pathogens of the genus Chlamydia Interferon gamma (IFN-γ) is especially important in controlling the virulence of Chlamydia species and thus impacts the modeling of human chlamydial infection and disease in mice. How IFN-γ contributes to cell-autonomous defenses against Chlamydia species and how these pathogens evade IFN-γ-mediated immunity in their natural hosts are not well understood. We conducted a genetic screen which identified 31 IFN-γ-sensitive (Igs) mutants of the mouse model pathogen Chlamydia muridarum Genetic suppressor analysis and lateral gene transfer were used to map the phenotype of one of these mutants, Igs4, to a missense mutation in a putative chlamydial inclusion membrane protein, TC0574. We observed the lytic destruction of Igs4-occupied inclusions and accompanying host cell death in response to IFN-γ priming or various proapoptotic stimuli. However, Igs4 was insensitive to IFN-γ-regulated cell-autonomous defenses previously implicated in anti-Chlamydia trachomatis host defense in mice. Igs4 inclusion integrity was restored by caspase inhibitors, indicating that the IFN-γ-mediated destruction of Igs4 inclusions is dependent upon the function of caspases or related prodeath cysteine proteases. We further demonstrated that the Igs4 mutant is immune restricted in an IFN-γ-dependent manner in a mouse infection model, thereby implicating IFN-γ-mediated inclusion destruction and host cell death as potent in vivo host defense mechanisms to which wild-type C. muridarum is resistant. Overall, our results suggest that C. muridarum evolved resistance mechanisms to counter IFN-γ-elicited programmed cell death and the associated destruction of intravacuolar pathogens.IMPORTANCE Multiple obligatory intracellular bacteria in the genus Chlamydia are important pathogens. In humans, strains of C. trachomatis cause trachoma, chlamydia, and lymphogranuloma venereum. These diseases are all associated with extended courses of infection and reinfection that likely reflect the ability of chlamydiae to evade various aspects of host immune responses. Interferon-stimulated genes, driven in part by the cytokine interferon gamma, restrict the host range of various Chlamydia species, but how these pathogens evade interferon-stimulated genes in their definitive host is poorly understood. Various Chlamydia species can inhibit death of their host cells and may have evolved this strategy to evade prodeath signals elicited by host immune responses. We present evidence that chlamydia-induced programmed cell death resistance evolved to counter interferon- and immune-mediated killing of Chlamydia-infected cells.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1128/mBio.00385-19

Publication Info

Giebel, Amanda M, Shuai Hu, Krithika Rajaram, Ryan Finethy, Evelyn Toh, Julie A Brothwell, Sandra G Morrison, Robert J Suchland, et al. (2019). Genetic Screen in Chlamydia muridarum Reveals Role for an Interferon-Induced Host Cell Death Program in Antimicrobial Inclusion Rupture. mBio, 10(2). 10.1128/mBio.00385-19 Retrieved from https://hdl.handle.net/10161/18525.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Coers

Jorn Coers

Professor in Molecular Genetics and Microbiology

Bacterial infections remain one of the leading causes of morbidity and mortality worldwide. The Coers lab seeks to understand fundamental aspects of the innate immune response to bacterial pathogens as well as the corresponding immune evasion strategies evolved by human pathogens undermining immunity in order to establish infections. Defining innate immunity and microbial counter-immunity pathways on a molecular level will provide roadmaps for the rational design of novel antimicrobial therapies and improved vaccine strategies against pathogens such as the enteric pathogen Shigella or the sexually transmitted pathogen Chlamydia.

In addition to making major inroads in the fields of innate immunity, inflammation and bacterial pathogenesis, our second, but equally important goal, is to train the next generation of scientists in an environment that prioritizes excellence, research integrity, teamwork and inclusiveness. We strive to create an environment of mutual respect, openness, collegiality, integrity and, last but not least, fun, which promotes and awards curiosity and fosters collaborations. We strongly believe that diversity promotes excellence.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.