Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Whole Brain White Matter Microstructure and Upper Limb Function: Longitudinal Changes in Fractional Anisotropy and Axial Diffusivity in Post-Stroke Patients.

Thumbnail
View / Download
4.4 Mb
Date
2019-01
Authors
Oey, Nicodemus Edrick
Samuel, Geoffrey Sithamparapillai
Lim, Joseph Kai Wei
VanDongen, Antonius Mj
Ng, Yee Sien
Zhou, Juan
Repository Usage Stats
30
views
9
downloads
Abstract
Background:Diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) measuring fractional anisotropy (FA) and axial diffusivity (AD) may be a useful biomarker for monitoring changes in white matter after stroke, but its associations with upper-limb motor recovery have not been well studied. We aim to describe changes in the whole-brain FA and AD in five post-stroke patients in relation to kinematic measures of elbow flexion to better understand the relationship between FA and AD changes and clinico-kinematic measures of upper limb motor recovery. Methods:We performed DTI MRI at two timepoints during the acute phase of stroke, measuring FA and AD across 48 different white matter tract regions in the brains of five hemiparetic patients with infarcts in the cortex, pons, basal ganglia, thalamus, and corona radiata. We tracked the progress of these patients using clinical Fugl-Meyer Assessments and kinematic measures of elbow flexion at the acute phase within 14 (mean: 9.4 ± 2.49) days of stroke symptom onset and at a follow-up appointment 2 weeks later (mean: 16 ± 1.54) days. Results:Changes in FA and AD in 48 brain regions occurring during stroke rehabilitation are described in relation to motor recovery. In this case series, one patient with a hemipontine infarct showed an increase in FA of the ipsilateral and contralateral corticospinal tract, whereas other patients with lesions involving the corona radiata and middle cerebral artery showed widespread decreases in perilesional FA. On the whole, FA and AD seemed to behave inversely to each other. Conclusions:This case series describes longitudinal changes in perilesional and remote FA and AD in relation to kinematic parameters of elbow flexion at the subacute post-stroke period. Although studies with larger sample sizes are needed, our findings indicate that longitudinally measured changes in DTI-based measurements of white matter microstructural integrity may aid in the prognostication of patients affected by motor stroke.
Type
Journal article
Subject
Diffusion tensor imaging
MRI
central nervous system
fractional anisotropy
stroke
Permalink
https://hdl.handle.net/10161/19267
Published Version (Please cite this version)
10.1177/1179573519863428
Publication Info
Oey, Nicodemus Edrick; Samuel, Geoffrey Sithamparapillai; Lim, Joseph Kai Wei; VanDongen, Antonius Mj; Ng, Yee Sien; & Zhou, Juan (2019). Whole Brain White Matter Microstructure and Upper Limb Function: Longitudinal Changes in Fractional Anisotropy and Axial Diffusivity in Post-Stroke Patients. Journal of central nervous system disease, 11. pp. 1179573519863428. 10.1177/1179573519863428. Retrieved from https://hdl.handle.net/10161/19267.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Antonius M. J. VanDongen

Associate Professor of Pharmacology & Cancer Biology
We have discovered a new connection between the memory gene Arc (Activity Regulated, Cytoskeletal-associated protein) and Alzheimer's disease. Arc is a master regulator of of synaptic plasticity and epigenetically controls the transcription of 1900 genes associated with with synaptic function, neuronal plasticity, intrinsic excitability (channels, receptors, transporters), and signaling pathways (transcription factors/regulators). Approximately 100 genes whose activity-dependent expression
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Support the Libraries
Duke University