Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion.

Thumbnail
View / Download
601.0 Kb
Date
2019-01
Author
McMahon, Timothy J
Repository Usage Stats
58
views
50
downloads
Abstract
Healthy red blood cells (RBCs) deform readily in response to shear stress in the circulation, facilitating their efficient passage through capillaries. RBCs also export vasoactive mediators in response to deformation and other physiological and pathological stimuli. Deoxygenation of RBC hemoglobin leads to the export of vasodilator and antiadhesive S-nitrosothiols (SNOs) and adenosine triphosphate (ATP) in parallel with oxygen transport in the respiratory cycle. Together, these mediated responses to shear stress and oxygen offloading promote the efficient flow of blood cells and in turn optimize oxygen delivery. In diseases including sickle cell anemia and conditions including conventional blood banking, these adaptive functions may be compromised as a result, for example, of limited RBC deformability, impaired mediator formation, or dysfunctional mediator export. Ongoing work, including single cell approaches, is examining relevant mechanisms and remedies in health and disease.
Type
Journal article
Subject
ATP
S-nitrosothiols
microcirculation
nitric oxide
respiratory
sepsis
sickle cell anemia
transfusion — H/A
Permalink
https://hdl.handle.net/10161/22472
Published Version (Please cite this version)
10.3389/fphys.2019.01417
Publication Info
McMahon, Timothy J (2019). Red Blood Cell Deformability, Vasoactive Mediators, and Adhesion. Frontiers in physiology, 10. pp. 1417. 10.3389/fphys.2019.01417. Retrieved from https://hdl.handle.net/10161/22472.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

McMahon

Timothy Joseph McMahon

Professor of Medicine
The McMahon Lab at Duke University and Durham VA Medical Center is investigating novel roles of the red blood cell (RBC) in the circulation. The regulated release of the vasodilator SNO (a form of NO, nitric oxide) by RBCs within the respiratory cycle in mammals optimizes nutrient delivery at multiple levels, especially in the lung (gas exchange) and the peripheral microcirculation (O2 transport to tissues). Deficiency of RBC SNO bioactivity (as in human RBCs banked for transfusion),
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University