Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydroxyethyl starch as a substitute for dextran 40 for thawing peripheral blood progenitor cell products.

Thumbnail
View / Download
531.2 Kb
Date
2015-12
Authors
Zhu, Fenlu
Heditke, Sarah
Kurtzberg, Joanne
Waters-Pick, Barbara
Hari, Parameswaran
Margolis, David A
Keever-Taylor, Carolyn A
Repository Usage Stats
6
views
12
downloads
Abstract
<h4>Background aims</h4>Removing DMSO post-thaw results in: reduced infusion reactions, improved recovery and stability of viable CD34+ cells. Validated methods use 5%-8.3% Dextran 40 with 2.5%-4.2% HSA for this purpose. Recent shortages of clinical grade Dextran require identification of suitable alternatives.<h4>Methods</h4>PBPC were used to compare a standard 2X wash medium of 5 parts 10% Dextran 40 in saline (DEX) with 1 part 25% HSA (8.3% DEX/ 4.2% HSA) with Hydroxyethyl Starch (HES)-based solutions. Cells in replicate bags were diluted with an equal volume of wash solution, equilibrated 5 minutes, the bag filled with wash medium, pelleted and the supernatant expressed. Bags were restored to the frozen volume in wash medium and tested by single platform flow cytometry and CFU. Total viability, viable TNC, MNC, and CD34+ cell recovery, and CD34+ cell viability were compared immediately post-thaw and after 90 minutes.<h4>Results</h4>5.2% HES/4.2% HSA did not differ from our standard in CD34 recovery or viability. Due to concerns that high concentrations of HES could affect renal function we tested 0.6% HES/2.5% HSA resulting in significantly poorer CD34 recovery and viability. Results improved using 2.4% HES/4.2% HSA and when 0.6% HES/4.2%HSA was used no significant differences were seen. CFU assays confirmed no differences between the standard dextran arm and HES at 2.4% or 0.6% so long as HSA was at 4.2%.<h4>Conclusions</h4>We conclude that HES from 0.6% to 5.2% with 4.2% HSA is a suitable substitute for Dextran 40 as a reconstitution/washing medium for PBPC products.
Type
Journal article
Subject
Hematopoietic Stem Cells
Cells, Cultured
Humans
Dextrans
Culture Media
Cryopreservation
Colony-Forming Units Assay
Cell Survival
Freezing
Male
Hydroxyethyl Starch Derivatives
Permalink
https://hdl.handle.net/10161/24615
Published Version (Please cite this version)
10.1016/j.jcyt.2015.08.007
Publication Info
Zhu, Fenlu; Heditke, Sarah; Kurtzberg, Joanne; Waters-Pick, Barbara; Hari, Parameswaran; Margolis, David A; & Keever-Taylor, Carolyn A (2015). Hydroxyethyl starch as a substitute for dextran 40 for thawing peripheral blood progenitor cell products. Cytotherapy, 17(12). pp. 1813-1819. 10.1016/j.jcyt.2015.08.007. Retrieved from https://hdl.handle.net/10161/24615.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics
Dr. Kurtzberg conducts both clinical and laboratory-based translational research efforts, all involving various aspects of normal and malignant hematopoiesis. In the laboratory, her early work focused on studies determining the mechanisms that regulate the choice between the various pathways of differentiation available to the pluripotent hematopoietic stem cell. Her laboratory established a CD7+ cell line, DU.528, capable of multilineage differentiation as well as self-renewal, and subse
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University